
D A N I E L G O N Z A L E Z C E D R E

D I S C R E T E
M AT H E M AT I C S

U N I V E R S I T Y O F N O T R E D A M E 1 s t J u n e , 2 0 2 4

These notes are intended for students of cse 20110 Discrete Mathematics at the University of Notre Dame.

Copyright © 2024 Daniel Gonzalez Cedre
https://daniel-gonzalez-cedre.github.io

https://daniel-gonzalez-cedre.github.io

Contents

Logic

0 Language 2
0.1 A Brief History of... 2

0.2 Syntax and Semantics 4

0.3 A Recurring Theme 5

1 Zeroth-Order Logic 7
1.1 Truth Values 7

1.2 Logical Connectives 10

Negations 10
Conjunctions and Disjunctions 11
Conditional Statements 12
A Formal Proposition 13
Logical Equivalence 14
Logical Nonequivalence 15

1.3 The Propositional Logic 16

Axioms and Proofs 16
Rules of Inference 22
Hilbert’s System 24
Classical Syllogisms 25

2 First-Order Logic 27
2.1 A More Expressive Language 28

Forming Formulæ Well 30

2.2 Rules of Inference 30

2.3 The Art of Writing Proofs 32

Quantified Formulæ 32
Conditional Statements 32
Junctions 32
Nonconstructive Proofs 33

Mathematics

3 Foundations 35
3.1 Informal Notions 35

Numbers 36
Functions 36
Sets 37
A Note on Notation 37

3.2 Set Theory 38

Infinity 40
Extensionality 40
Pairing 43
Separation 44
Power 45
Union 45
Regularity 47
Another Note on Notation 48

3.3 Functions 49

3.4 Lifting the Veil 51

4 Arithmetic 52
4.1 The Categorical Structure of Arithmetic 52

4.2 Abstraction and Extension 55

The Integer Ring 55
The Rational Field 56
The Continuum 56
Zero-Product Property 56

5 Ancient Number Theory 57
5.1 The Greeks 57

6 Combinatorics 61
6.1 Judging the Size of a Set 61

6.2 Compositionality and Invertibility 64

6.3 Counting with Our Fingers 65

6.4 Structure and Substructure 66

6.5 Arrangement and Derangement 68

6.6 Equivalence and Partitioning 69

6.7 Simple Graphs 72

7 Asymptotic Analysis 73

8 Infinity 74
8.1 Silence 74

8.2 The Sound of Seven Trumpets 76

The Bottomless Abyss 76
Scarlet Smoke 78

8.3 Apocalypse 79

The Four Horsemen 80

9 Modern Number Theory 81
9.1 A Different Point of View 81

9.2 The Algebraic Perspective 83

Narrow Field of View 84
Peripheral Vision 87

9.3 Asymmetric Cryptography 88

Key Generation 88
Encryption 89
Decryption 90

Index 92

Notation

syntax semantics

⊤ “True.” A true sentence; a tautology.

⊥ “False.” A false sentence; a contradiction.

x := y “x is, by definition, y.”
The name x has been assigned
to the object referenced by y.

x = y “p equals q.” p and q refer to the same object.

p ≡ q
p ⇔ q

“p is equivalent to q.”
“p if and only if q.”

The sentence p is logically
equivalent to the sentence q.

p ⊢ q
p ⇒ q

“p proves q.”
“p implies q.”

By assuming the sentence p,
we can prove the sentence q.

∅ “the empty set” The set containing no elements.

{a, b, c} “the set containing
a, b, and c”

The collection containing only a, b, c.

{
x
∣∣ φ(x)

} “the set of all x
such that φ(x)”

The collection whose elements are
all possible objects x for which
the sentence φ(x) is true.{

x ∈ A
∣∣ φ(x)

} “the set of all x in A
such that φ(x)”

The collection of all x from A
for which the sentence φ(x) is true.

f : A → B “ f is a function from A to B.”
A function named f
with domain A and codomain B.

f (x) “ f of x”
The output of f on the input x,
where x ∈ A and f (x) ∈ B.

s(n) “the successor of n” The next natural number after n.

N “enn” The set of natural numbers.

Z “zee” The set of integers.

Q “queue” The set of rational numbers.

R “arr” The set of real numbers.

P(x) “the power set of x” The set of all subsets of x.

Table 1: An overview of some important
notation. Note that some expressions,
like p ≡ q and p ⊢ q, have more than
one equivalent notation. The middle col-
umn gives some common ways of reading
each notation in English. The last column
provides the meaning of each expression.

color interpretation

Emphasis
Definition
Pronunciation
Internal link
External link

Table 2: Color legend.

mark meaning

直覺 idea
公理 axiom
引理 lemma
定理 theorem
推論 corollary
定義 definition
演算法 algorithm

Table 3: Notation for organizing topics.
These glyphs will be used to demarcate
definitions, theorems, lemmas, etc.

glyph name ipa

A α alpha [a]
B β beta [v]
Γ γ gamma [G]
∆ δ delta [D]
E ε epsilon [e]
Z ζ zeta [z]
H η eta [E:]
Θ θ theta [T]
I ι iota [i:]
K κ kappa [k]
Λ λ lambda [l]
M µ mu [m]

glyph name ipa

N ν nu [n]
Ξ ξ xi [ks]
O o omicron [o]
Π π pi [p]
P ρ rho [r]
Σ σ sigma [s]
T τ tau [t]
Y υ upsilon [y:]
Φ φ phi [f]
X χ chi [kh]
Ψ ψ psi [ps]
Ω ω omega [O:]

Table 4: The Greek alphabet. Each glyph
in the alphabet is given first in upper-
case and then in lower-case along with its
English name and the IPA pronunciation.

glyph name ipa

א aleph [ø]
ב bet [v]
ג gimel [G]
ד dalet [D]
ה he [h]
ו waw [v]
ז zayin [z]
ח chet [X]
ט tet [t]
י yod [j]
K kaf [x]

glyph name ipa

ל lamed [l]
M mem [m]
N nun [n]
ס samech [s]
ע ayin [P]
P pe [f]
Z tsadi [ts]
ק qof [k]
ר resh [K]
ש shin [S]
ת tav [T]

Table 5: The Hebrew abjad. Only non-
final variations of each glyph are shown.

Logic

0

Language
“No language is justly studied merely as an aid to other purposes.
It will in fact better serve other purposes, philological or
historical, when it is studied for love, for itself.”

– J. R. R. Tolkien

Figure 1: A fragment of book 2
from Euclid’s Elements taken from the
Oxyrhynchus papyri, dated ca. 100 AD.

We communicate our thoughts to others with the use of language. This
is worth reflecting on. You are probably reading this because you
have some interest in computation, mathematics, logic, or are incurably
bored; the goal of these notes is—in part—to provide the mathematical
background necessary to study these fields at a higher level. This is
particularly true for aspiring computer scientists, who may have some
misconceptions about their field because of its misleading name,1 and 1 It’s not about computers, nor is it science.

who may not be aware that the field properly and historically falls
under the grand umbrella of mathematics.

This ambitious undertaking must therefore involve engaging with the
tumultuous and violent history of mathematics. Although modern
computer science is now richly interdisciplinary, the field was born
during a particularly turbulent period in the late 19th and early 20th

centuries AD2 agitated by an existential crisis in mathematics: a crisis 2 We will see later that its roots span at
least to the time of Euclid in 300 BC.caused by our flagrant use of language. Here’s a short summary.

0.1 A Brief History of...

The serious study of rhetoric—the art of argumentation and persuasion—
as a subject in its own right dates back to at least the 5th century BC.3 3 The time of the ancient Greek sophists,

who were notably opposed by Socrates,
Plato, and Aristotle.

Around the 3rd century BC, Euclid’s 13 books of the Elements heralded
the birth of geometry, algorithmic computation, and the first theory
of numbers,4 where he proved certain statements followed from a list 4 The only evidence of algorithms be-

fore this time—for multiplying, factoring,
and finding square roots—dates back to
Egypt and Babylon before 1600 BC.

of axiomatic assumptions. This was a great achievement, establishing
mathematical proof as a form of argumentation that logically deduces
conclusions from a list of common assumptions. The contemporane-
ous Greek philosopher Theophrastus further pushed the envelope by
describing the form of these arguments and establishing their validity.

https://en.wikipedia.org/wiki/Oxyrhynchus_Papyri
https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Euclid%27s_Elements
https://en.wikipedia.org/wiki/Theophrastus

language 3

The ancient Greeks laid the foundation for the two instrumental as-
pects of mathematical thought: abstraction and argumentation. Euclid
abstracted what were thought to be the fundamental truths of geometry
into a list of 12 axioms1 so that, instead of thinking about that particu-axiom 1 An axiom is a statement that we assume

is true without justification nor proof.lar wall or that particular stick or that particular roof, he could make
statements and observations about quadrilaterals, and lines, and triangles
in general. These axioms were meant to encode the universal truths
of geometry: the nature of what it fundamentally means to construct
and measure distances, angles, and (simple) shapes. The last of these
axioms would quickly become infamous.

Axiom (Parallel Postulate).
If two straight lines meet a third straight line making two interior angles
that are each less than right angles, then the two lines—if they were to
be extended—must intersect on that side of the interior angles. 公理

1 / 1

Figure 2: The parallel postulate says that
any two lines and that make
acute interior angles and with a third
line must intersect at a point .

If you stop to think for a moment, this postulate says something very ob-
vious. Assuming all of Euclid’s other axioms, there are a few equivalent
ways to restate the parallel postulate:

1. For any line L and point P not on L, there is exactly one line parallel
to L passing through P.

2. The sum of interior angles in any triangle is 180 degrees.

3. A right triangle with side lengths A, B, C satisfies A2 + B2 = C2.

You’ll recognize this third statement as the Pythagorean theorem,2 which

2 A theorem is a statement that has a proof.

is not merely an assumption!3 For the next 2000 years, the mathematical

3 The first two are called Playfair’s axiom
and the triangle postulate respectively.

community was haunted by the thought that it was possible to prove
the parallel postulate using the other axioms. It seemed like the rest of
the axioms did such a perfectly good job of characterizing geometry
that the parallel postulate must necessarily follow from the other axioms.

1 / 1 1 / 1

1 / 1 1 / 1

Figure 3: Four views of the same triangle
whose angles sum to 270 degrees. Notice
how the notions of straight and parallel
differ on the surface of a sphere.

However, between 1810–1832 AD, no less than three papers on hyper-
bolic geometry were published, and by 1854 Bernhardt Riemann had
developed a theory of Riemannian geometry on manifolds. These were
all different examples of consistent models of geometry that denied
the parallel postulate! These ideas were intensely contested: many
mathematicians and natural philosophers of the time refused to accept
the notion that geometry could be non-Euclidean because it went against
their intuitive notion of how geometry should behave.

This whole ordeal was only foreshadowing what would come at the
turn of the century. In 1874, Georg Cantor would make a series of dis-
coveries4 surrounding the nature of infinity so fundamentally opposed 4 We will study these later.

to common mathematical thought that he would be antagonized and
ostracized for decades, causing him to suffer serious depressive crises.

https://en.wikipedia.org/wiki/Bernhard_Riemann
https://en.wikipedia.org/wiki/Georg_Cantor

4 discrete mathematics

Once again, mathematicians’ intuitive notions of how infinity should behave
were being contradicted. Cantor’s discoveries sparked not only a civil
war within the mathematical community but also a concerted effort
by many mathematicians and logicians in the early 20th century to fix
mathematics by establishing it on a firm logical foundation.1 1 This ambitious project would eventually

fail with the discovery of Kurt Gödel’s
infamous incompleteness theorems.The cause of all this turmoil was, fundamentally, a lack of precision and

rigor in the way people would communicate mathematical ideas and
arguments. What does it mean for a line to be straight, or for two
straight lines to be parallel? What does it mean to have two lines, or
to have infinitely many lines? What is infinity? Is infinity a number?
What are numbers? How do we know we are saying anything true at all?

If we hope to answer any of these questions, we must first develop
a language for precise mathematical communication. This necessarily
begins with a systematic deconstruction and analysis of language itself.

0.2 Syntax and Semantics

Languages encode ideas into sequences of symbols.2 These symbols 2 For our purposes, we will focus only
on written—as opposed to spoken or
signed—languages.

represent objects, ideas, actions, and concepts. The meaning behind
a particular cluster of symbols is called its semantics. The form thesemantics

language takes, dictated by its grammatical rules for composing symbols
into valid sentences, is called its syntax. We refer to objects by givingsyntax

them names. A variable is a symbol3 that stands in place for an objectvariable 3 We typically denote variables using sin-
gle Latin or Greek letters, though there
are no strict universal rules. Some com-
mon examples are listed below.
· a, b, c, i, j, k, ℓ, m, n, p, q, u, v, w, x, y, z

· A,B, C,D,G,H,M,N ,R,X ,Y ,Z
· α, β, γ, δ, ϵ, η, θ, λ, µ, π, σ, τ, φ, ψ, ω

that has not been determined yet.4 We can assign a name to a particular

4 A variable does not necessarily refer one
particular object, or even any object at all.

object with the := symbol. We call these the terms of an expression.term

Definition 0.1 (Sentences).
A sentence is the expression of a complete thought or idea in accordancesentence

with the syntactic and grammatical rules of a given language. A state-
ment is called atomic if it can’t be broken down into smaller semanticatomic

components in any way that obeys the language’s syntax and grammar.

1. A declarative sentence is one that describes something. They typically “Oft hope is born when all is forlorn.”

consist of a subject being described and a predicate property it has.

2. An interrogative sentence asks a non-rhetorical question. “What has it got in its pocketses?”

3. An imperative sentence heralds a command or request. “Keep your forked tongue behind your teeth.”

定義

Mathematical practice principally involves making and justifying observa-
tions about mathematical objects.5 As such, we are only really interested 5 We leave the problem of what a mathe-

matical object actually is for later.in crafting declarative sentences—sentences that describe terms. We will
systematically deconstruct and analyse these kinds of sentences, extract
their logical essence, and build up a new language.

language 5

0.3 A Recurring Theme

Before going any further, we should make a brief detour to discuss
a topic that lies at the heart of computing, logic, and the 20th century
foundational crisis in mathematics: recursion. In a very strong sense,
what we mean when we say that some thing is computable is that there is
a recursive procedure that produces that thing.

Idea (Church-Turing Thesis). We say something is computable if it is
expressible as a general recursive process, is a term in the λ-calculus, or
could be described by a Turing machine. 直覺

Recursion

Turing
machines

λ-calculus

∼=

1 / 1Figure 4: The Church-Turing thesis states
that these three concepts—which are all
formally equivalent—correspond with our
informal notion of computability. In mod-
ern times, many people now take this as
a definition for computability.

Actually, the three concepts described above are all equivalent to each
other. It should then be no surprise that recursion (and its twin induction)
will play a central role in our studies, so we will take this brief moment
to quickly describe the fundamental idea at underlying recursion.1

1 We leave Turing machines and the λ-
calculus for a future time.

First, an example: how do we compute the sum of a list of n numbers?

3 + 5 + 9 + 2

With some hard work and determination and access to the internet, we
can see that 3 + 5 + 9 + 2 = 19, but how did we get that answer? At
the most basic level, we started by taking two of the numbers, 3 and
5 say, computing their sum 3 + 5 = 8, and adding this intermediate
result to another number from the list, 9 say, to get 8 + 9 = 17, and
adding that again to yet another element of the list—in this case, only 2
remains—to finally arrive at 17 + 2 = 19.

3 + 5 + 9 + 2 = 3 + 5 + 9 + 2 (1)

= 8 + 9 + 2 (2)

= 8 + 9 + 2 (3)

= 17 + 2 (4)

= 17 + 2 (5)

= 19 (6)

This might seem so obvious it physically hurts, but let’s analyse what
we just did more closely. Suppose we have a list of n arbitrary numbers.2 2 Notice that, being the sophisticates we

are, we start counting at 0, so that a list
of n numbers will be indexed starting at
0 and ending at n − 1.

x0 + x1 + x2 + · · ·+ xn−2 + xn−1

Once again, we begin by taking the first two numbers and computing
x0 + x1, then adding this result to x2, then adding that result to x3, then
adding that result to x4, and so on until we reach the end of the list.
So, in order to compute x0 + x1 + x2 + . . . xn−2 + xn−1, we first need to
compute x0 + x1 + x2 + . . . xn−2 and then add that result to xn−1.

6 discrete mathematics

But wait, isn’t x0 + x1 + x2 + . . . xn−2 also the sum of a list? It is, it’s
just that the list has one less element! So how do we compute the sum of
elements in a list? We first compute the sum of elements in a list, and then
add one more element to that result. So, it seems like in order to do
what we want, we need to already know how to do what we want; the
key here is that we only need to know how to sum the elements of a
smaller list in order to get the result we want for the larger list. As long
as we can eventually get a result for one of these “smaller” sums, we will
be able to build up a solution to our original problem by passing this
result “back up” the chain of computation. Back to our first example.

3 + 5 + 9 + 2 = 3 + 5 + 9 + 2 (1)

= 3 + 5 + 9 + 2 (2)

= 3 + 5 + 9 + 2 (3)

= 8 + 9 + 2 (4)

= 17 + 2 (5)

= 19 (6)

Steps (1) through (3) continually decompose the given list into sublists This paragraph describes the recurrence.

on the left until we have no more lists we can break up. Each one of
these lists is a smaller version of the original problem, and we compute
the sums of these smaller lists by breaking them down and computing
their sublists’ sums, recombining these results at the end.

This now brings us to an important point: we can’t decompose 3 any This paragraph encounters the basis.

further, because this list only has one element in it. Do we know what
the sum of all numbers in a list with one element is? Of course we do:
it’s just that number. Now we can return this result back up to the 5 that
was waiting to be added to it, and when we add them together, we can
return that result back to the 9 that was waiting, and then return that
result to the 2 that was waiting, finally letting us conclude that the sum
over the whole list is 19. The recurrence relation below summarizes this.1recurrence

relation
1 Notice that this is actually written
slightly differently than the procedure
we’ve just described; think about how this
is different and whether or not it actually
computes the same result as the proce-
dure we were just analysing.

sum(x0, x1, . . . xn−1) =

0 if n = 0

sum(x0, x1, . . . xn−2)+ xn−1 if n ⩾ 1

We’ve exposed here a recurrence and a basis—the two key components
underlying recursion (and, later, induction). The recurrent part of thisrecurrence

procedure explains how to express a problem in terms of “smaller” in-
stances of the same problem, describing how to combine the solutions
to those subproblems into a solution for the original problem. Obvi-
ously, though, if you just keep decomposing problem into subproblems
forever, you’ll never be able to actually generate an answer to any-
thing. Eventually, you need to stop and actually say what the answer to
something is. The basis—a.k.a. base case—does exactly this by providingbasis

explicit answers to the smallest versions of the problem.

1

Zeroth-Order Logic

“The limits of my language means the limits of my world.”

– Ludwig Wittgenstein

As we saw in the previous chapter, sentences can be broadly classified
based on the kind of information they convey—their functional role in
language. How do we begin deconstructing the descriptive fragment
of our language? Naturally, we can think to classify the descriptive
sentences by asking the fundamental question: is this description true?

1.1 Truth Values

Figure 1.1: Illustration by Rockwell Kent
from “Moby Dick: or, The Whale.”

Let’s consider the following declarative sentence.

“Ahab is a captain.” (1.1)

Here we have a descriptive sentence about the term Ahab—a man
and thus an object of our discourse—asserting he is a captain. In the
context of Herman Melville’s Moby Dick, this is an accurate description.
Referring to the above sentence as σ1.1, we would then say σ1.1 is true.true

We introduce the symbol ⊤ to denote these kinds of sentences.⊤

“Ishmael is a whale.” (1.2)

The above sentence, however, which we will name σ1.2, immediately
furrows the brow and strikes at the heart of our conscience. We know
from the story that Ishmael is a sailor, and thus human, and therefore
not a whale! We should then want to say that σ1.2 is false, reserving thefalse

symbol ⊥ for sentences of this kind.⊥

The symbols ⊤ and ⊥ are also sometimes
called “top” and “bot” respectively.

The attributes true and false that we are attaching to these sentences
are what we call truth values, and they are the essential component oftruth value

the kinds of sentences we want to express. Sentences that are true all
exhibit a quality that makes them similar to each other but dissimilar
to false sentences, regardless what the actual sentences themselves mean

8 discrete mathematics

semantically. What we’ve just done is abstract the fundamental concept
of truth value from descriptive sentences. This abstraction allows us to
notice that all true sentences are essentially the same as each other, at least
from the perspective of their truth values, with the same applying to
false sentences. On the other hand, true and false sentences are complete
opposites. This relationship inspires our first definition below.

Definition 1.1 (Propositional Equivalence).
We say that two sentences φ and ψ are equivalent when they have theequivalence

same truth value. We denote this by writing φ ≡ ψ.1 定義≡
1 “φ is (logically) equivalent to ψ.”

Axiom (Propositional Equivalence is an Equivalence Relation).
We will take the following three properties to be true for any sentences
φ, ψ, and ξ that are carriers of truth values.

1. φ ≡ φ. reflexivity

2. If φ ≡ ψ, then ψ ≡ φ. symmetry

3. If φ ≡ ψ and ψ ≡ ξ, then φ ≡ ξ. transitivity

This establishes ≡ is an example of an equivalence relation. 公理

With this new definition, we can formalize our observations from the
preceding paragraph as σ1.1 ≡ ⊤ and σ1.2 ≡ ⊥ as well as σ1.1 ̸≡ σ1.2.
Notice that each of these three expressions is a complete sentence
describing properties2 held by some objects.3 In fact, these statements 2 being (or not) logically equivalent

3 the sentences σ1.1 and σ1.2were themselves true declarative sentences. Now, let’s ponder the
following sentence, which we will call σ1.3.

“Colorless green ideas sleep furiously.” (1.3)

Like the previous examples, this is a grammatically correct, declarative
sentence, but what does this sentence mean? Is it true? Is it false? Taking
the normal English definitions for each of the words in this sentence,
it doesn’t seem to make any sense. We then clearly can’t call it an
accurate description of anything, so it can’t possibly be true. Does that
mean it must be false? Well, if we assume it is false, then what about
the following sentence?

“Colorless green ideas do not sleep furiously.” (1.4)

This one, which we will call σ1.4, seems to be saying the opposite of
whatever σ1.3 was saying, so if the other one is false, then this one must
be true. The question then becomes: what is σ1.4 accurately describing?
This sentence seems to make just as little sense as the original! This
should lead us to conclude that σ1.3 could not have been false either, so
that sentence has no truth value! We call expressions like this nonsensicalnonsense

because they carry no semantic meaning.

zeroth-order logic 9

Let’s now analyse the following statement, which we will call σ1.5.

“This sentence is false.” (1.5)

Expressed a little more formally, this is the sentence—named σ1.5—
that says σ1.5 ≡ ⊥. This certainly doesn’t seem like nonsense; it says
something clear about a well-understood object. So, what is the truth
value of this sentence? We can try reasoning about this like we did
before by examining the two possible truth values the σ1.5 can take.

First, let’s assume σ1.5 is true, which we write formally as σ1.5 ≡ ⊤.
By definition, this would imply σ1.5 is an accurate description of some
object, so we should believe what the sentence says about that object.
In this case, the object is σ1.5 and the description is that σ1.5 ≡ ⊥. This
contradicts our initial assumption! � Therefore, σ1.5 is not true!1 1 We conclude this because this is the op-

posite of our initial assumption, which
lead us to a contradiction.That rules out one truth value. What happens then if we assume σ1.5 is

false? Again, we can write this formally as σ1.5 ≡ ⊥. By definition, this
implies we should reject what σ1.5 is asserting, leaving us with σ1.5 ̸≡ ⊥.
As before, a contradiction emerges! � Therefore, σ1.5 is not false either!

From this simple analysis, we can see that σ1.5 does not have a truth value!
Sentences that contradict themselves like this are called paradoxes.2 In theparadox 2 The word paradox is unfortunately over-

load and context-dependent. When refer-
ring to specific sentences, we will use it to
specifically mean a self-contradictory sen-
tence such as σ1.5, but it is also commonly
used in some contexts to refer to situa-
tions that are simply unintuitive rather
than outright contradictory.

preceding analysis, we relied on the idea that ⊤ and ⊥ are opposed
to each other, so that the same sentence can’t meaningfully be both ⊤
and ⊥ at the same time. This should be intuitive based on our natural
understanding and usage of the words true and false, but we will make
it a point to formally introduce this idea now.

Axiom (Principle of Bivalence).
Sentences expressing truth values are either true or false but not both.

公理

What this analysis has hopefully shown us is that not every well-formed,
declarative sentence expresses a truth value. In order for a sentence to
express a truth value, it must satisfy the following three properties.

1. The sentence must be grammatically well-formed.

2. The sentence must be declarative.

3. The sentence must be semantically meaningful.

These are the kinds of statements are eligible to carry a truth value—the
ones for which it would make sense to say they are either true or false—so
they will form the foundation of our new language. We will eventually
call these propositions, but beware that this is not (yet) a formal definition
of what a proposition is. First, we need to get a better sense of what
propositions are linguistically and how they are formed.

10 discrete mathematics

1.2 Logical Connectives

The examples of sentences we’ve seen so far have all been atomic—
meaning they can’t be broken down into simpler sentences that them-
selves are complete thoughts—but we can obviously express thoughts
that are more than merely atomic. These compounded propositions are
formed by taking smaller propositional sentences and connecting them
together based on what our intended meaning is.

p q ¬p p ∧ q p ∨ q p → q p ↔ q

⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤

Table 1.1: A truth table summarizing the
basic connectives of classical logic. The
two left-most columns represent the input
values of the propositions p and q. The
remaining columns describe the output of
each expression given the corresponding
inputs on each row.

Each of these different ways of connecting sentences together suggests
a different way of transforming between truth values by combining the
truth values of the component propositions into a truth value for the
compound expression.

In this section, we will uncover these different transformations—which
we will call logical connectives—and encode them using truth tables,logical

connective which specify the output truth values for every combination of inputs.

Negations

Table 1.2: Truth table for negations.

p ¬p

⊤ ⊥
⊥ ⊤Suppose we encountered the following sentence, which we call σ1.6.

“Espresso is not delicious.” (1.6)

Immediately, the moral observer will realize the offensive absurdity of
this sentence, compelled by the force of conscience to declare σ1.6 ≡ ⊥!
With this, we could simply carry on with our day; however, pausing
to think for a moment, we can see that σ1.6 is intimately related to the
following (much more pleasant) sentence, which we call σ1.7.

“Espresso is delicious.” (1.7)

This sentence is clearly true, letting us sigh σ1.7 ≡ ⊤ in relief. Not only
that, it is the saying exactly the opposite of what σ1.6 asserted! We
call propositions like these negations of each other. This is our firstnegation

example of a transformation of truth value: the negation of a proposition
is another proposition with the opposite truth value. To denote this
formally, we introduce the ¬ symbol, allowing us to write σ1.6 ≡ ¬σ1.7.¬

We can now think of ¬ formally as a unary function that operates
on truth values.1 This function works by mapping ¬⊤ to ⊥ and by 1 A function is unary if it takes only one

input argument. We will study functions
in more detail later.

zeroth-order logic 11

mapping ¬⊥ to ⊤. This gives us a way of abstracting negations at the
level of truth values, so that we can formally define what it means to
negate a proposition. We provide this definition now in table 1.2, where
the left-most column represents the inputs1 to ¬ and the right-most 1 . . . shown with white backgrounds . . .

column shows the truth values of the resulting output expression.2 2 . . . shown with colored backgrounds . . .

Conjunctions and Disjunctions Table 1.3: Truth table for logical conjunc-
tions and disjunctions.

p q p ∧ q p ∨ q

⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊤
⊥ ⊤ ⊥ ⊤
⊥ ⊥ ⊥ ⊥

But we can obviously connect two (and sometimes more) sentences
together to create larger sentences in English. For example,

“Espresso is delicious, and it nourishes the soul.” (1.8)

This sentence is composed of two smaller atomic sentences, namely
“espresso is delicious” and “espresso nourishes the soul,” which we know
are both independently true. Connecting them together with the word
“and” should then, based on the way this word works in English, pro-
duce another true sentence. Conversely, if either of the subexpressions
had been false, the compound result should also be false. This binary
connective is called the logical conjunction, and we denote it using theconjunction

∧ symbol. It is defined in table 1.3.∧

There are several distinct ways this connective can appear in English
that are nonetheless equivalent. Some examples are listed below.

“Espresso is delicious, and it nourishes the soul.”
“Espresso is delicious and soul-nourishing.”
“Espresso is delicious, but it nourishes the soul.”
“Espresso is delicious, yet nourishing to the soul.”
“Espresso is delicious; further, it nourishes the soul.”
“Although espresso is delicious, it also nourishes the soul.”

Table 1.4: These sentences are all logi-
cally equivalent to σ1.8, though this list is
obviously not exhaustive.

The conjunction has a logical dual called the disjunction, defined indisjunction

table 1.3 using the ∨ symbol and exemplified by the following sentence.∨

“Espresso is delicious, or it nourishes the soul.” (1.9)

We call these connectives dual to each other because negating all of the
inputs to one of them is equivalent to negating the output of the other.

Definition 1.2 (Logical Duality).
We say two logical connectives f and g are logically dual if negating thelogical

duality inputs of f is always logically equivalent to negating the output of g.
Equivalently, we can say f is logically dual to g if applying f after ¬
gives the same result as applying ¬ after g on all possible inputs. 定義

12 discrete mathematics

Conjunctions and disjunctions are just one example of a dual connective
pair. In fact, every logical connective is dual to some other connective!1 1 Why might this be? Think about this.

For now, we present this result about ∧ and ∨ without proof; we will
prove this statement when we discuss theorem 1.5 in a short while.

Conditional Statements

Table 1.5: Truth table for conditionals.

p q p → q p ↔ q

⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤

We turn our attention now to sentence σ1.10 below.

“If espresso nourishes the soul, then I will drink it.” (1.10)

This is a conditional sentence, composed of two subclauses called the
antecedent and the consequent.2 When we use this sort of linguistic 2 Synonyms for antecedent & consequent.

protasis apodosis
sufficient necessary
premise inference
assumption conclusion
supposition deduction
implicant implicand
hypothesis thesis

construction, we mean to say that if the premise happens, then the
conclusion must also happen. Said another way: the conclusion must
occur whenever the premise is satisfied. Notice we are not asserting
anything about the antecedent or consequent individually! We are only
establishing a relationship where the consequent occurs every time that
the premise is satisfied. We call this the material implication, denoted byimplication

the → symbol and defined in table 1.5.→

p1.10 := “Espresso nourishes the soul.”

q1.10 := “I will drink espresso.”

The antecedent and consequent for σ1.10 are defined above. With these
definitions, we can now write σ1.10 ≡ p1.10 → q1.10 and observe that
σ1.10 simply says: if p1.10 ≡ ⊤, then q1.10 ≡ ⊤. Importantly, this is
the only thing that σ1.10 is asserting! This sentence is not saying that if
p1.10 ≡ ⊥, then q1.10 ≡ ⊥. In fact, if the premise is false, then σ1.10 says
nothing about whether or not q1.10 is true or false.

To make this concrete, suppose I told you the following.

“If you make an A in this class, then I will eat my shoe.” (1.11)

If you do happen to make an A in this class, then I’ll be forced to
physically eat my shoe in order to keep up my end of the bargain; in
that case, the sentence was true.3 On the other hand, if you make a B 3 ⊤ → ⊤ ≡ ⊤
instead, then I can go home with both shoes and conscience intact; in
this case, the sentence was also true.4 However, what if you make the B 4 ⊥ → ⊥ ≡ ⊤
but I decide to eat my shoe anyways? Did I lie? No; just because you
failed to make an A doesn’t mean I can’t eat my shoe! All I said was
that I definitely would if you made an A.5 That sentence is only a lie 5 ⊥ → ⊤ ≡ ⊤
when you do make an A in the class, but I refuse to eat my shoe, since
I really am breaking my promise then.6 6 ⊤ → ⊥ ≡ ⊥

In table 1.6, we list several ways of verbalising p → q in English. Since
this connective can be worded in so many unintuitive ways; careful
attention must be paid to phrases involving conditionals.

zeroth-order logic 13

“I will drink espresso if it nourishes the soul.”
“Espresso nourishes the soul only if I drink it.”
“It is sufficient that espresso nourish the soul for me to drink it.”
“It is necessary that I drink espresso for it to nourish the soul.”
“I will drink espresso unless it doesn’t nourish the soul.”

Table 1.6: These sentences are all logically
equivalent to σ1.10. Pay close attention to
grammar of each sentence, and make spe-
cial note of where the connectives appear.

Finally, the material equivalence,1 also called the biconditional and written 1 This is often written “if and only if” in
English, abbreviated iff .

biconditional

p ↔ q, is true exactly when p and q have the same truth value and is↔
false otherwise. With these connectives all defined, we are now ready
to formally introduce the recursive definition of a proposition.

A Formal Proposition

Definition 1.3 (Proposition).
We say that λ is a proposition iff λ satisfies the following recurrence.proposition Notice the use of equality = rather than

equivalence ≡ throughout this definition.
In each statement here, we are saying that
the statement λ is equal to the expression
on the right-hand side of the = symbol,
meaning they are the same sentence written
in the same way. This gives a syntactic
definition of what a proposition is.
The use of parentheses in this definition
is to avoid issues with order of opera-
tions; in situations where the meaning is
clear, we can carefully drop parentheses.

1. λ = ⊤ or λ = ⊥.

2. λ = ¬(φ), where φ is a proposition.

3. λ = (φ) ∧ (ψ) where φ and ψ are propositions.

4. λ = (φ) ∨ (ψ), where φ and ψ are propositions.

5. λ = (φ) → (ψ) where φ and ψ are propositions.

6. λ = (φ) ↔ (ψ), where φ and ψ are propositions.

定義

This definition works by first establishing as our basis that ⊤ and ⊥
are propositions in (1). We then, in (2) through (6), specify larger
propositions recursively by composing together smaller, already-existing
propositions using logical connectives. This lets us verify statements
like ((¬⊤) ∧ (⊥ ∧ ⊤)) → ⊤ are indeed propositions by recursively
decomposing it until we reach the bases.

((¬⊤) ∧ (⊥ ∧ ⊤)) → ⊤

(¬⊤) ∧ (⊥ ∧ ⊤) ⊤

¬⊤ ⊥ ∧ ⊤

⊤ ⊥ ⊤

5 5

3 3

2 3 3

1 / 1

Figure 1.2: In this example, we have
dropped some unambiguous parentheses
for clarity. Notice, however, that some
parentheses cannot be dropped: for ex-
ample, those around the premise of the
→ conditional, and those separating the
arguments of the two ∧ conjunctions. If
those parentheses had been placed like
((¬⊤) ∧ ⊥) ∧ ⊤ instead, we would have
parsed instead of as in the figure.

14 discrete mathematics

Alternatively, think of this as inductive bootstrapping.1 Beginning with ⊤ 1 “Pulling itself up by the bootstraps.”

and ⊥ from (1) as our initial instances of propositions, we then build
larger propositions like ¬⊥ and ⊤ ∧ ⊥, which fall into (2) and (3)
respectively. We can then take those expressions, conjunct them again
using (2), and place an implication between that result and ⊤ using (5)
to arrive at our final expression ((¬⊤) ∧ (⊥)) → ⊤. By taking basis
expressions and connecting them together according to the rules laid
out in the definition, we computed a way of building the final expression
in a way that satisfies the definition, verifying that it is a proposition.

((¬⊤) ∧ (⊥ ∧ ⊤)) → ⊤

(¬⊤) ∧ (⊥ ∧ ⊤) ⊤

¬⊤ ⊥ ∧ ⊤

⊤ ⊥ ⊤

5 5

3 3

2 3 3

1 / 1

Figure 1.3: The inductive way of build-
ing up the expression, as contrasted with
the recursive way of tearing down the
expression in the previous figure.

Definition 1.4 (Propositional Formula).
A propositional formula is an expression that evaluates as a propositionpropositional

formula when all of its variables are themselves replaced by propositions. 定義

Logical Equivalence

The astute reader may have noticed that some expressions are logically
equivalent to each other even if they look different when written out.

p q ¬(p ∧ q) ¬p ∨ ¬q p → q ¬q → ¬p

⊤ ⊤ ⊥ ⊥ ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊤ ⊤

Table 1.7: A truth table verifying two
equivalences. First, that ¬(p ∧ q) and
¬p ∨ ¬q are equivalent as predicted by
DeMorgan. Second, that p → q is equiva-
lent to its contrapositive ¬q → ¬p.

For example, it’s clear that p ↔ q ≡ (p → q) ∧ (q → p), as the name “if
and only if” would suggest. We saw another example of an equivalence
when we examined the duality of ∧ and ∨, illustrated in table 1.7. We
can see that statements like these are logically equivalent because the
output truth values are always the same whenever we assign the same
input truth values to the variables in these expressions. In their joint
truth table, the output columns for the two expressions are identical.

zeroth-order logic 15

Equivalent propositions are essentially the same when we view them through
the lens of truth values.1 1 The idea of blurring the lines between

objects that are essentially the same accord-
ing to some salient characteristics is a
fundamental idea in mathematics that
shows up basically everywhere. This is,
fundamentally, why abstractions are use-
ful and interesting: we abstract in order
to draw equivalences between things we
previously thought of as distinct.

Following this idea means having to construct a joint truth table when-
ever we want to check whether or not two formulæ are equivalent.
Although it would be a straightforward to automate, doing all of
our work by hand would be extremely tedious. If we are given two
propositions φ(p1, p2, . . . pn) and ψ(p1, p2, . . . pn) consisting of the same
variables, then answering φ(p1, p2, . . . pn)

?≡ ψ(p1, p2, . . . pn) requires
computing truth values for φ and ψ with all possible combinations of
truth assignments to p1, p2, . . . pn and checking that they match.

Now, p1 can either be ⊤ or ⊥. For each of these truth values, we then
have check both truth values p2 can take. Then, for each of those, we
need to check the two truth values for p3, and so on until we reach pn.
Each particular assignment of truth values to all of the propositional
variables corresponds to one row in our truth table.

If n = 1, so our propositions each involve one variable, this means
we only need two rows in our truth table to exhaust the entire search
space: one row if the variable is ⊤, and one row if it’s ⊥. However,
with each new variable we introduce, we double the size of our search
space because this new variable comes with two new possible truth values
that we need to check for each of the rows we’ve already computed. We
summarize this phenomenon with the following recurrence relation.2 2 The degenerate case of n = 0, when

neither expression has any propositional
variables, would just require one row in
our truth table since each proposition
only has one, unchanging truth value.rows(n) =

1 if n = 0

2 if n = 1

2 · rows(n − 1) if n ⩾ 2

(1.12)

This shows us that answering the equivalence question for propositional
formulæ of n variables involves computing a truth table with 2n rows.
Obviously, this doesn’t scale; it quickly becomes infeasible to even allocate
enough space for our output columns, much less actually compute and
check these outputs. The thinking man’s alternative is to instead
prove that the two expressions are equivalent, constructing a formal,proof

logical argument that derives φ(p1, p2, . . . pn) ≡ ψ(p1, p2, . . . pn) from
assumptions—called axioms—using rules of inference.axiom

Logical Nonequivalence

Showing that two propositional expressions are not equivalent is com-
putationally easier than showing that they are. Checking that two
propositional formulæ are equivalent involves either writing proof or
computing every row of an exponentially sized truth table. However,
checking that two formulæ are not equivalent requires just one example

16 discrete mathematics

of a truth assignment on which the propositions disagree. Instead of
an entire truth table, all we need is a single row.

p q ¬(p ∧ q) ¬p ∧ ¬q

⊤ ⊤ ⊥ ⊥
⊤ ⊥ ⊤ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤

Table 1.8: A truth table showing nega-
tions do not distribute over conjunctions.

For example, to show that p → q ̸≡ q → p, all we have to do is let
p := ⊤ and q := ⊥. We can then observe that p → q ≡ ⊤ → ⊥ ≡ ⊥.
Meanwhile, q → p ≡ ⊥ → ⊤ ≡ ⊤. Thus, we conclude p → q ̸≡ q → p.

Definition 1.5 (Logical Equivalence & Nonequivalence).
Let φ and ψ be propositional formulæ both consisting of the same
variables p1, . . . pn. We say that φ is equivalent to ψ if every assignmentlogical

equivalence of truth values to the variables of φ and ψ produces the same truth
value. In this case, we write φ ≡ ψ.≡

We say that φ is not equivalent to ψ if there is an assignment of truthlogical non
equivalence values to the formulæ’s variables that makes the truth values of φ and

ψ different. In this case, we write φ ̸≡ ψ. 定義̸≡

1.3 The Propositional Logic

Axioms and Proofs Figure 1.4: George Boole, a largely
self-taught mathematician, logician, and
philosopher, first described the epony-
mous Boolean algebra in his 1854 mono-
graph The Laws of Thought.

The axioms of propositional logic encode the foundational assumptions
we are making about the nature of truth-value-based reasoning. We
take these truths to be self-evident without justification.

identity ⊤ ∧ p ≡ p ⊥ ∨ p ≡ p
complement ¬p ∧ p ≡ ⊥ ¬p ∨ p ≡ ⊤
commutativity p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
associativity p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
distributivity p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

conditional disintegration p → q ≡ ¬p ∨ q
biconditional disintegration p ↔ q ≡ (p → q) ∧ (q → p)

Table 1.9: The axioms of classical logic.
The first five specify a Boolean algebra; no-
tice that each of these first five axioms
has a conjunctive fragment (left) and a
dual disjunctive fragment (right).

Each of the statements in this table is a logical equivalence establishing
that the two expressions are interchangeable in all contexts. We could
verify each of these by constructing the appropriate truth table; however,
the attitude we will take is that each statement in the table simply is

https://en.wikipedia.org/wiki/George_Boole

zeroth-order logic 17

true a priori, without any need for verification. Instead, they will form
the basis upon which we build proofs of other statements.

The complement axiom in the second row of table 1.9 shows us two
important facts about the negation of any proposition. If we take a
proposition p and conjunct it with its negation ¬p, that axiom tells
us that we get ⊥; dually, disjuncting p with its negation gives us ⊤.
Is this behavior characteristic of ¬p? The following theorem tells us
yes, that any proposition that behaves like the negation of p must be
indistinguishable from ¬p through the lens of truth values! With that
said, let’s try to prove our first theorem.1theorem 1 A theorem is a provable proposition.

Theorem 1.1 (Uniqueness of Complements).
For any p and q, if p ∧ q ≡ ⊥ and p ∨ q ≡ ⊤, then ¬p ≡ q. 定理

Proof. Let p and q be arbitrary propositions.2 Assume p ∧ q ≡ ⊥ and 2 Since we need to prove this statement
for any two propositions p and q, we in-
troduce two arbitrary propositions at the
beginning of our proof.

p ∨ q ≡ ⊤.3 We will prove ¬p ≡ q by showing that ¬p and q are both

3 These assumptions are warranted be-
cause they are the premise of the condi-
tional statement we are proving.

equivalent to the same expression. First, observe the following.

¬p ≡ ⊤ ∧ ¬p by identity

≡ ¬p ∧ ⊤ by commutativity

≡ ¬p ∧ (p ∨ q) because we assumed p ∨ q ≡ ⊤
≡ (¬p ∧ p) ∨ (¬p ∧ q) by distributivity

≡ ⊥ ∨ (¬p ∧ q) by complement

≡ ¬p ∧ q by identity

As a result, ¬p ≡ ¬p ∧ q. Similarly, we can now observe the following.

q ≡ ⊤ ∧ q by identity

≡ q ∧ ⊤ by commutativity

≡ q ∧ (p ∨ ¬p) by complement

≡ (q ∧ p) ∨ (q ∧ ¬p) by distributivity

≡ (p ∧ q) ∨ (¬p ∧ q) by commutativity

≡ ⊥ ∨ (¬p ∧ q) because we assumed p ∧ q ≡ ⊥
≡ ¬p ∧ q by identity

This gives us q ≡ ¬p ∧ q. Thus, we conclude ¬p ≡ ¬p ∧ q ≡ q. q.e.d.
q.e.d. stands for Quod Erat Demonstran-
dum, which is Latin for “what was to be
shown has been demonstrated,” after the
Greek ῞Οπερ ἔδει δεῖξαι. This is called
a tombstone, and it is a traditional way
of denoting the end of a proof. Modern
authors might use □ or ■ instead.

Notice how every statement in the proof above is written with purpose,
and much of the proof is inspired by the form of the theorem we are trying
to prove. Let’s analyze what just happened. Before we begin writing
the proof, we first read the theorem focussing on two things: the form
of the statement, and what the statement says.

18 discrete mathematics

First and foremost, this theorem says something about any propositions.
We have two options for proving something is true about every single
proposition: we can check all of them individually, or we can show
that the thing we are trying to prove is an inherent quality of being a
proposition. The former approach is clearly unworkable whenever we
have infinitely many—or even just a large amount of—things to check,
as we do here. Instead, we will take the later approach: by taking an
arbitrary proposition and making no assumptions, imposing no constraints,
then any argument we make about this particular proposition will also
apply to any other proposition we encounter.1 The first sentence of the

1 As an example, suppose we wanted to
prove that the square of any positive num-
ber is also positive. We obviously can’t
check all of the positive numbers one-by-
one. Instead, we can take an arbitrary
number x such that x > 0, and then
argue that x2 > 0. If we do this suc-
cessfully, then we can take any particular
number, such as 5, substitute it for x in
our argument, and obtain a proof that
52 > 0. However, if we couldn’t have
written our original argument in terms of
5; this would have meant imposing the
additional constraint that x = 5, prevent-
ing our argument from generalizing to
all positive numbers.

proof introduces these two arbitrary propositions.

Now that we know we are proving something universal about propo-
sitions, we keep reading the theorem and see that it’s a statement of
the form “if ___, then ___.” This is a conditional statement, and the
most straight-forward way to show a conditional statement is true is to
demonstrate the conclusion is fulfilled whenever the premise is true. Thus, we
can assume the premise of the conditional is true, and our task then is
to derive the conclusion. The second sentence of our proof assumes the
premise, which happens to be a conjunction of two statements.

Up to this point, everything we’ve done has been determined solely
by the form of the theorem we are trying to prove. Now, our task is to
take what we have and show the conclusion.2 What follows next is a 2 If our conclusion were a longer, com-

pound statement, we would continue
breaking the problem down recursively
until we were left with something atomic.

sequence of logical statements, each of which is justified,3 which ends

3 . . . either by a definition, an axiom, an
assumption we’ve made, or a prior theorem
we’ve proven . . .

at the conclusion we wanted. How you decide to craft this sequence
of statements—what statements to make in what order, what proof
techniques to use, what intuition inspired your approach—is entirely
dependent on your style as long as all of the logic is clear, all of the
logical rules are followed, and all of the justification is correct.

Proof-writing is an art form in much the same way building a musical
instrument is. When a luthier makes a guitar, the process is guided
by the particular luthier’s traditions, experiences, style, and tastes; so
long as the final product is truly a guitar that sounds and plays like
a guitar should, the luthier has complete liberty. While two master

Figure 1.5: Examples of three distinct
bracing styles for the classical guitar.

luthiers might take radically different approaches that lead to guitars
with unique aesthetic qualities, they will nonetheless produce two
functioning guitars and preference of one over the other will be a
matter of judgement and taste. This is much the same when it comes
to writing proofs; the analogue to programming should be clear.

Since we proved theorem 1.1, we can now use this result in the future
when proving more complicated statements. For example, it should be
easy to see intuitively that ⊤ ≡ ¬⊥ and ⊥ ≡ ¬⊤, based on the way we
use the words true and false in natural language and how ⊤ and ⊥ are

zeroth-order logic 19

meant to correspond to those truth values. We can now prove this as a
corollary—a simple consequence—of theorem 1.1.

Corollary 1.1.
⊤ ≡ ¬⊥ and ⊥ ≡ ¬⊤. 推論

Proof. Observe that ⊥ ∧ ⊤ ≡ ⊥ by the identity axiom. Similarly, we
have that ⊥ ∨ ⊤ ≡ ⊤ ∨ ⊥ ≡ ⊤ by commutativity and the identity
axiom again. So, we can apply theorem 1.11 and conclude ⊤ ≡ ¬⊥.

1 We can invoke the theorem here because
we have just proven the premises of the
theorem are true for the particular propo-
sitions we are looking at (in this case,
p := ⊥ and q := ⊤). That means, having
satisfied the premises, we get to assert
the conclusion, justified by that theorem.

Similarly, we can observe that ⊤ ∧ ⊥ ≡ ⊥ ∧ ⊤ ≡ ⊥ by commutativity
and identity, and ⊤ ∨ ⊥ ≡ ⊤ by the identity axiom. Thus, ⊥ ≡ ¬⊤ by
theorem 1.1. q.e.d.

A proof gives us more than just a formal verification of a statement. It
tells us that the statement is a necessary consequence of the axioms we
assumed in setting up our logical system, and every instance of a proof
gives us insight into why that’s the case. These past two proofs show us
that we didn’t have to explicitly define or assume ⊤ to be the opposite of
⊥ because this is a face satisfied by any instance of a Boolean algebra.

Let’s prove another simple, but useful, theorem.

Corollary 1.2.
For any propositions p and q, if p ≡ q, then ¬p ≡ ¬q. 推論

Proof. Let p and q be propositions such that p ≡ q and observe.

q ∧ ¬p ≡ p ∧ ¬p because we assumed p ≡ q

≡ ⊥ by commutativity and complement

We can do a very similar thing in the disjunctive case.

q ∨ ¬p ≡ p ∨ ¬p because we assumed p ≡ q

≡ ⊤ by commutativity and complement

Therefore, applying theorem 1.1, we conclude that ¬p ≡ ¬q. q.e.d.

Corollary 1.3.
For any propositions p, q, r, s such that p ≡ q and r ≡ s, the following.

p ∧ r ≡ q ∧ s

p ∨ r ≡ q ∨ s

p → r ≡ q → s

p ↔ r ≡ q ↔ s

推論

20 discrete mathematics

We include corollary 1.3 above just for completeness, so that some of
the basic properties of ≡ are codified somewhere; their proofs are not
particularly interesting. We are now ready to tackle the proof of a claim
you probably find so obvious as to not even be worth mentioning.

Theorem 1.2 (Double Negation).
For any proposition p, we have that p ≡ ¬¬p. 定理

Proof. Let p be a proposition. We will show p acts like the negation
of ¬p. Observe ¬p ∧ p ≡ p ∧ ¬p ≡ ⊥ by commutativity and the
complement axiom. Similarly, ¬p ∨ p ≡ p ∨ ¬p ≡ ⊤ by commutativity
and complement. Therefore, p ≡ ¬(¬p) by theorem 1.1. q.e.d.

Theorem 1.3 (Idempotence).
For any proposition p, we have p ∧ p ≡ p and p ∨ p ≡ p. 定理

Proof. Let p be a proposition. For the conjunctive statement, observe.

p ∧ p ≡ ⊥ ∨ (p ∧ p) by identity

≡ (p ∧ p) ∨ ⊥ by commutativity

≡ (p ∧ p) ∨ (p ∧ ¬p) by complement

≡ p ∧ (p ∨ ¬p) by distributivity

≡ p ∧ ⊤ by complement

≡ ⊤ ∧ p by commutativity

≡ p by identity

An analogous chain of reasoning takes us through the disjunctive case.1 1 Notice that we have combined some
steps here involving commutativity; when
it is clear, we can save some space by
combining commutativity with the step di-
rectly proceeding it. We do not yet have
the maturity to combine any other steps.

p ∨ p ≡ (p ∨ p) ∧ ⊤ by identity and commutativity

≡ (p ∨ p) ∧ (p ∨ ¬p) by complement

≡ p ∨ (p ∧ ¬p) by distributivity

≡ p ∨ ⊥ by complement

≡ ⊥ ∨ p by commutativity

≡ p by identity

Therefore, we have p ∧ p ≡ p and p ∨ p ≡ p as desired. q.e.d.

Theorem 1.4 (Domination).
For any proposition p, we have ⊤ ∨ p ≡ ⊤ and ⊥ ∧ p ≡ ⊥. 定理

Proof. Let p be a proposition. We first prove the conjunctive fragment.

⊤ ∨ p ≡ p ∨ ⊤ by commutativity

≡ p ∨ (p ∨ ¬p) by complement

≡ (p ∨ p) ∨ ¬p by associativity

zeroth-order logic 21

≡ p ∨ ¬p by idempotence

≡ ⊤ by complement

The disjunctive fragment works out similarly.

⊥ ∧ p ≡ p ∧ ⊥ by commutativity

≡ p ∧ (p ∧ ¬p) by complement

≡ (p ∧ p) ∧ ¬p by associativity

≡ p ∧ ¬p by idempotence

≡ ⊥ by complement

We therefore conclude p ∨ ⊤ ≡ ⊤ and p ∧ ⊥ ≡ ⊥. q.e.d.

Figure 1.6: Augustus De Morgan, after
whom these laws are named, is also no-
table for his work on logical quantifica-
tion and mathematical induction.

Theorem 1.5 (De Morgan’s Laws).
¬(p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q for any p and q. 定理

Proof. Let p and q be propositions. We will leave the proof of ¬(p ∨
q) ≡ ¬p ∧ ¬q as an exercise to the reader.

(p ∧ q) ∧ (¬p ∨ ¬q) ≡ p ∧ (q ∧ (¬p ∨ ¬q)) by associativity

≡ p ∧ ((q ∧ ¬p) ∨ (q ∧ ¬q)) by distributivity

≡ p ∧ ((q ∧ ¬p) ∨ ⊥) by complement

≡ p ∧ (⊥ ∨ (¬p ∧ q)) by commutativity

≡ p ∧ (¬p ∧ q) by identity

≡ (p ∧ ¬p) ∧ q by associativity

≡ ⊥ ∧ q by complement

≡ ⊥ by domination

In the conjunctive branch above, we derived (p ∧ q) ∧ (¬p ∨ ¬q) ≡ ⊥.
We show (p ∧ q) ∨ (¬p ∨ ¬q) ≡ ⊤ in the disjunctive branch below.

(p ∧ q) ∨ (¬p ∨ ¬q) ≡ ((p ∧ q) ∨ ¬p) ∨ ¬q by associativity

≡ (¬p ∨ (p ∧ q)) ∨ ¬q by commutativity

≡ ((¬p ∨ p) ∧ (¬p ∨ q)) ∨ ¬q by distributivity

≡ ((p ∨ ¬p) ∧ (¬p ∨ q)) ∨ ¬q by commutativity

≡ (⊤ ∧ (¬p ∨ q)) ∨ ¬q by complement

≡ (¬p ∨ q) ∨ ¬q by identity

≡ ¬p ∨ (q ∨ ¬q) by associativity

≡ ¬p ∨ ⊤ by complement

≡ ⊤ ∨ ¬p by commutativity

≡ ⊤ by domination

Therefore, by theorem 1.1, we conclude ¬(p ∧ q) ≡ ¬p ∨ ¬q as desired.
q.e.d.

https://en.wikipedia.org/wiki/Augustus_De_Morgan

22 discrete mathematics

Rules of Inference

the deduction rule (p ⊢ q) ⊢ (p → q) If, by assuming p, we can prove q,
then we can write p → q.

modus ponens p, (p → q) ⊢ q If we have p → q and we know p,
then we can deduce q.

modus tollens ¬q, (p → q) ⊢ ¬p If we have p → q but also ¬q,
then we can infer ¬p.

reductio ad absurdum
(
¬p ⊢ q

)
,
(
¬p ⊢ ¬q

)
⊢ p If ¬p leads to a contradiction,

then ¬p is absurd; we conclude p.

Table 1.10: The rules of inference.
So far, we’ve developed a modestly-powerful formal language—capable
of expressing some basic logical ideas—founded on axioms. This gives
us a formal syntactic framework for expressing logical ideas, along
with a basic semantics that relates these formal symbols to our natural
language. The axioms in table 1.9 are all equivalences—substitution rules
between propositions that preserve truth values.

Yet, you may have noticed that some of our reasoning in those proofs
was not based on equivalences. This is most apparent in the proof of
theorem 1.1, our very first theorem. We began that proof by introducing
two arbitrary propositions and then immediately assuming that their con-
junction was ⊥ and their disjunction as ⊤. Making those assumptions
was not justified on any of the equivalence axioms we’d introduced,
so why were we allowed to say that in our proof? By a similar token,
in the proof of corollary 1.1, we apply theorem 1.1 by saying that, since
we’d satisfied the premises of that theorem, we were allowed to write
down the conclusion of that theorem. Why were we allowed to say
that? In short: because it makes sense! The problem, of course, is that
nothing yet in our system formally gives us the right or power to do
these things, even though they make logical sense. This then calls for
the introduction of more axioms—ones that permit one-way, inferential
arguments. We call these the rules of inference.

The rules in table 1.10 each take the form Γ ⊢ φ,1 where Γ represents 1 “Γ proves φ” or “φ follows from Γ.”

a set of assumptions and φ is the conclusion that follows from them.
The ⊢ symbol, sometimes called a turnstile, signifies that we can prove⊢prove

φ by assuming the statements in Γ and using the equivalence axioms,
the rules of inference, and any theorems we’ve already proven. If there
is nothing written to the left of the ⊢ symbol, this simply means that
the conclusion φ can be derived without any additional assumptions.

The most important of the rules of inference is modus ponens, enabling
us to follow through on chains of conditional reasoning.2 Modus ponens 2 Modus ponens is short for the Latin

phrase modus ponendo ponens, literally “the
method of putting by placing.”

is, in a sense, the essence of classical rhetoric. Without it, the conclusion
of a conditional statement’s conclusion would not be meaningfully

zeroth-order logic 23

conditioned on its premise. There would be no point in establishing
hypothetical arguments because the conditional chains of reasoning
would never actually have any point to work towards. This rule has a
sister—modus tollens—which conversely allows breaking down arguments
counterfactually, denying antecedents with false consequents.1

1 Modus tollens is short for the Latin
phrase modus tollendo tollens, literally “the
method of removing by taking away.”

The next rule, named reductio ad absurdum,2 gives us the ability to 2 Reductio ad absurdum is a Latin phrase
meaning to “reduce to absurdity.” This has
also been called argumentum ad absurdum.

construct proofs by contradiction. Suppose we are interested in proving
some proposition p. One way to reason about the validity of p is to
think about what would happen if p were not the case. Hypothetically,
assuming ¬p, if we were able to derive both q and also ¬q, then
we would have derived a falsity (q ∧ ¬q ≡ ⊥). If we were starting
from true premises, this would be impossible since all of our axioms
and rules of inference are truth-preserving. Clearly, this must mean
that our assumption ¬p was not true, leaving p as the only logical
conclusion. This form of argumentation is like “is like arguing with a
hammer,” according to a dear professor of mine from undergrad. It is
incredibly powerful and has been in use since at least the year 400 BC.3

3 In Plato’s dialogues, Socrates frequently
engages in this sort of reasoning by show-
ing his opponents’ seemingly-sensible
statements can be systematically disman-
tled to absurdity.Finally, the deduction rule is a technical rule of inference that ties together

the meta-symbol ⊢ with the logical → symbol. It enshrines the parallel
between a deductive “q follows from p” statement and a formal “if p then
q” statement. If this distinction is confusing, just keep in mind that
we are constructing a formal language to express mathematical ideas
with; the propositions we express are written in our language, but we
write our proofs of these propositions in our natural language, and our
natural language is what we use to write down the rules and axioms
that our language must obey. The deduction rule tells us that the result
of our proofs can be converted into statements within the formal language.

Although this is a rather small collection of rules, it is capable of
representing any kind of expressible propositional rhetoric. Despite
that, it’s not a minimal set of rules for the zeroth-order logic. In fact,
it’s possible to have an even smaller set of rules without sacrificing
the rhetorical strength of our language. Modus tollens, for instance,
could actually be shown to follow from the other rules of inference as a
theorem, reducing our total number of assumptions. Let’s prove it now.

Theorem 1.6 (Modus Tollens).
We have ¬q, (p → q) ⊢ ¬p for any propositions p and q. 定理

Proof. Let p and q be arbitrary propositions, and suppose ¬q and also
p → q. We know that p → q ≡ ¬q → ¬p,4 so we have ¬q → ¬p. Then, 4 This result—that a conditional state-

ment is equivalent to its contrapositive—is
left as an exercise to the reader.

by modus ponens, we can conclude ¬p. q.e.d.

The interested reader might be excited to learn that all of propositional
logic can be encoded using just two connectives (¬ and →) and just three

24 discrete mathematics

axioms along with modus ponens. There are several classical syllogisms
that have been studied since the time of the ancient Greeks. Before
discussing these, we will first prove three important theorems.

Hilbert’s System

Figure 1.7: David Hilbert and Gottlob
Frege were two of the most influential
figures in the logicist program that was at-
tempting to reduce mathematics to pure
logic. Outside of logic, Hilbert was an ex-
tremely accomplished algebraist (maybe
you’ve heard of Hilbert spaces in the con-
text of linear algebra). Frege, while un-
derappreciated during his life, is now rec-
ognized as one of the greatest and most
profound mathematicians and philoso-
phers of language of human history.

The logical system we’ve set up so far—the axioms that establish the
propositional calculus as a Boolean algebra, and our comprehensive
rules of inference—is very user-friendly, but for this reason it is not
minimal. We could have made our logical system more “elegant”—in
some eyes—by choosing a shorter list of axioms and relying on only
one rule of inference, at the consequence of having much uglier theorems
and substantially more tedious proofs. Nonetheless, there is still benefit
to be had by studying one of these more minimal axiomatizations, as
it will provide us invaluable insight into proving a very important
theorem: conjunction elimination. This alternative axiomatization for the
propositional calculus is attributed to Hilbert and Frege. A modern,
more condensed version of their system can be written using only two
axioms, which we now prove as theorems below.

Theorem 1.7 (Hilbert’s First Axiom).
⊢ φ → (ψ → φ) for any propositions φ and ψ. 定理

Proof. Let φ and ψ be arbitrary propositions and assume φ. Suppose
ψ. We have φ by assumption. Thus, we have ψ ⊢ φ since we derived
φ from ψ. By the deduction rule, we then obtain ψ → φ. We now have
φ ⊢ (ψ → φ), since we derived ψ → φ from φ. Therefore, we conclude
φ → (ψ → φ) by the deduction rule. q.e.d.

Theorem 1.8 (Hilbert’s Second Axiom).
⊢ (φ → (ψ → ξ)) → ((φ → ψ) → (φ → ξ)) for any φ, ψ, ξ. 定理

Proof. Let φ, ψ, and ξ be propositions and assume φ → (ψ → ξ). We
want to show (φ → ψ) → (φ → ξ). Towards that goal, assume φ → ψ.
We now want to show φ → ξ; so, towards this goal, assume φ. Now,

φ, (φ → (ψ → ξ)) ⊢ ψ → ξ

by modus ponens using our earlier assumption, so we obtain ψ → ξ.
Again, by applying modus ponens to our prior assumption, we see that

φ, (φ → ψ) ⊢ ψ

leaves us with ψ. We now take these two intermediate results to deduce

ψ, (ψ → ξ) ⊢ ξ

using modus ponens. Since we derived ξ from φ, we can assert φ ⊢ ξ.

https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Gottlob_Frege
https://en.wikipedia.org/wiki/Gottlob_Frege

zeroth-order logic 25

We now apply the deduction rule several times to arrive at the conclusion.
From (φ ⊢ ξ), we deduce (φ → ξ). Next, from ((φ → ψ) ⊢ (φ → ξ)),
we deduce ((φ → ψ) → (φ → ξ)). Lastly, we take our expression
((φ → (ψ → ξ)) ⊢ ((φ → ψ) → (φ → ξ))) and finally derive
((φ → (ψ → ξ)) → ((φ → ψ) → (φ → ξ))). q.e.d.

Classical Syllogisms

We now follow in the footsteps of classical students of rhetoric, who in
antiquity would ponder over these (and other) syllogisms—a traditional
term referring to an argument where a conclusion is drawn from some
collection of premises—as a way to hone our skills in the sister arts of
proof-writing and deductive reasoning.

The following theorem allows us to construct and follow extended
chains of conditional reasoning. Combined with modus ponens, this
fundamentally forms the basis for any nontrivial argument.

Theorem 1.9 (Hypothetical Syllogism).
We have (p → q), (q → r) ⊢ p → r for any propositions p, q, r. 定理

Proof. Let p, q, and r be arbitrary propositions, and suppose p → q
and q → r. We will first show that p ⊢ r. Assume p. Since p → q,
we have q by modus ponens. Further, since we have q → r, we get r by
modus ponens. Thus, p ⊢ r. Therefore, by applying the deduction rule,
we can conclude p → r. q.e.d.

The next theorem is the converse of the deduction rule. When these
two are taken together, they establish the formal, syntactic equivalence
between the → and ⊢ symbols, which are semantically distinct.

Theorem 1.10 (Implication Elimination).
We have (p → q) ⊢ (p ⊢ q) for any propositions p and q. 定理

Proof. Let p and q be arbitrary propositions, and suppose p → q. We
will now show that p ⊢ q. Assume p. Then, since we have p → q, we
can derive q by modus ponens. Thus, p ⊢ q. q.e.d.

Theorem 1.11 (Conjunction Introduction).
We have p, q ⊢ p ∧ q for any propositions p and q. 定理

Proof. Let p and q be arbitrary propositions. Assume p, and also
separately assume q. Towards a contradiction, suppose ¬(p ∧ q). 1 We 1 When beginning a proof by contradiction,

it is good form to explicitly alert the
reader to this fact with a phrase like “to-
wards a contradiction.”

can plainly see the following chain of equivalences.

¬(p ∧ q) ≡ ¬p ∨ ¬q by De Morgan’s laws

≡ p → ¬q by conditional disintegration

26 discrete mathematics

So, we have p → ¬q, from which we can derive ¬q by modus ponens.
However, since already we had q, we now have a contradiction. � 1 1 The symbol � is useful in proofs by con-

tradiction to highlight to the reader where
the contradiction is and when it is reached.Therefore, we can conclude p ∧ q by reductio ad absurdum. q.e.d.

In table 1.11, we summarize these results and some other theorems. We
leave the proofs of these as an important list of exercises to the reader.

modus tollens ¬q, (p → q) ⊢ ¬p
hypothetical syllogism (p → q), (q → r) ⊢ p → r
implication elim. (p → q) ⊢ (p ⊢ q) a.k.a. the consolidation rule

conjunction intro. p, q ⊢ p ∧ q a.k.a. adjunction

conjunction elim. p ∧ q ⊢ p a.k.a. simplification

disjunction intro. p ⊢ p ∨ q a.k.a. addition

disjunction elim. (p → r), (q → r), (p ∨ q) ⊢ r a.k.a. proof by cases

ex falso quodlibet p,¬p ⊢ q a.k.a. explosion

constructive dilemma (α → γ), (β → δ), (α ∨ β) ⊢ γ ∨ δ

Table 1.11: Some useful theorems.

2

First-Order Logic

“I am in a charming state of confusion.”

– Ada Lovelace

English shepherd’s pie, as God intended.

The humble paella, national dish of Spain.

Tostada & café, a classic Cuban breakfast.

The language we have described so far is often called the classical
logic—since this is a modern development on Aristotelian logic—or
the propositional logic because its basic syntactic unit is the proposition.
Having the proposition as the most granular accessible referent helps
keep this language manageable, but it will hold us back from being
as expressive as we’d like to be. For example, suppose we are hungry,
and in the course of our ruminations we discover that shepherd’s pie is
irresistibly delicious. We also happen to know the same thing about
paella. Having recognized these facts, no simple substitute will do: we
must have one of these two meals if we are to be satisfied at all. How
might we express this logically? Let’s introduce some definitions.

s := “We eat shepherd’s pie.”

p := “We eat paella.”

n := “We do not eat anything.”

The claim we are trying to express would formally look as follows.

(¬s ∧ ¬p) → n (2.1)

From the syntax above, it doesn’t seem like there is any relationship
between the premise of that conditional statement and its conclusion.
In fact, there doesn’t even appear to be a relationship between s and
p, even though they are both saying something really similar, because
syntactically they just look like two distinct propositions! Suppose our
friend felt the same way as we do about food, but he additionally knew
about a secret third food: the tostada. Our friend might then resolve to
have that meal as a fall-back if he can’t get his hands on shepherd’s pie
or paella. He would let t := “We eat a tostada.” and say the following.

(¬s ∧ ¬p) → t (2.2)

28 discrete mathematics

Now, despite our two claims having the exact same syntactic form, they
express remarkably different ideas. To realize this, think about what
it would take to prove (2.1): after verifying ¬s and ¬p, we would then
need to show we did not eat any other food! This is a universal claim
we are making about all possible meals. However, our friend is not
making this kind of claim: his conclusion is simply that there exists a
particular meal he eats if ¬s and ¬p are satisfied. To prove himself
right, he simply has to show that he ate that particular meal.

2.1 A More Expressive Language

It will quickly become frustrating for our language to limit our expres-
sivity like this. The missing component in our language is the ability to
distinguish the object of our speech from the predicate description we
make about it when we declare a proposition.

Every man is mortal.
Socrates is a man.

∴ Socrates is mortal.

The argument above seems like a clear, sensible argument; it in fact
looks like a simple application of modus ponens. Yet, we realize that
a proof of this argument in the propositional logic could not actually
invoke modus ponens. There is no way to symbolize the first sentence
in such a way that we obtain a conditional x → y where the premise
is “Socrates is a man,” and if we can’t do that then we can’t apply modus
ponens. We fix this issue by augmenting our language with the ability to
syntactically distinguish between predicates and the terms they describe.

Definition 2.1 (Term).
A term is a symbol denoting an object. Specific terms—e.g., the naturalterm

number 5, Socrates, shepherd’s pie—are called constants. Placeholder
terms denoting objects that have not been specifically determined are
called variables. Notice that terms, on their own, do not form complete
sentences! A term does not have a truth value! 定義

Definition 2.2 (Predicate).
Let x1, . . . xn be variable symbols. We say φ(x1, . . . xn) is an n-ary
predicate if replacing each of the n variables x1, . . . xn by terms t1, . . . tnpredicate

from our results in a proposition φ(t1, t2, . . . tn), carrying a truth value.
The collection of all terms that our language has referential access to isuniverse of

discourse our universe of discourse. 定義

We’ve now introduced a new problem into our language though.
Suppose we have define the predicates µ(x) := “x is a man” and

first-order logic 29

θ(x) := “x is mortal′′ in an attempt to translate the previous argu-
ment. We can now translate the second premise and conclusion as
µ(Socrates) and θ(Socrates) respectively. But we still can’t translate the
first line. For this, we need the ability to express quantities.

Let φ(x1, . . . xi, . . . xn) be an n-ary predicate containing a variable xi.
The universal quantification of the variable xi appearing in φ is denoteduniversal

∀x
(

φ(x1, . . . x, . . . xn)
)

and says any constant replacing x will satisfy φ.∀ “For all x, φ(x1, . . . x, . . . xn).”

def forall(universe, predicate):

for x in universe:

if not predicate(x):

return False

return True

Figure 2.1: A hypothetical implementa-
tion of ∀x(φ(x)). If it returns False, then
there is at least one x in universe such
that predicate(x) == False, which is
equivalent to ∀x(φ(x)) ≡ ⊥. Otherwise,
every x satisfies predicate(x) == True,
meaning ∀x(φ(x)) ≡ ⊤.

The existential quantification of xi is denoted ∃x
(

φ(x1, . . . x, . . . xn)
)

andexistential “There exists x such that φ(x1, . . . x, . . . xn).”
claims that there is at least one constant that, in place of x, satisfies φ. The∃
scope of a quantifier is denoted by parentheses specifying its variable’s
lifetime; that variable is bound to that quantifier within that scope. A
variable that is not bound to any quantifier is called free. Statementsfree variable

with free variables cannot have truth values, they do not carry meaning. If
a statement has free variables, those variables need to either be replaced
by terms, or be bound to a quantifier. Because this will be useful in the

def exists(universe, predicate):

for x in universe:

if predicate(x):

return True

return False

Figure 2.2: A hypothetical implementa-
tion of ∃x(φ(x)). If True is returned, then
there must be an x in universe such that
predicate(x) == True, which is equiva-
lent to ∃x(φ(x)) ≡ ⊤. Otherwise, every x

satisfies predicate(x) == False, so that
∃x(φ(x)) ≡ ⊥.

future, we also introduce the unique existential quantification of xi as aunique
existential way of saying that there is exactly one constant satisfying φ in place for

x. We use the notation ∃!x
(

φ(x1, . . . x, . . . xn)
)

to denote this, and read∃!

this in English as “there exists a unique x such that φ(x).”

∃!x
(

φ(x)
)

:⇔ ∃x
(

φ(x) ∧ ∀y
(

φ(y) →
(
y = x

)))
.

This is a special case of existential quantification; using the unique
existential quantifier means making an existential claim and additionally
asserting that only one such example exists. So, we define the ∃!
quantifier in terms of the ∃ quantifier. Be careful to note that the ! symbol
in ∃! does not correspond with negating anything! Do not make the mistake
of confusing ! with ¬ if you have experience with a programming
language where the ! syntax corresponds to logical negation.

30 discrete mathematics

Forming Formulæ Well

Definition 2.3 (Formulæ).
We say a formula φ is atomic if it satisfies the following recurrence.atomic

formula

1. φ = ⊤ or φ = ⊥.

2. φ = ψ(t1, . . . tn), where ψ is an n-ary predicate, t1, . . . tn are terms.

We say λ is a well-formed formula—often abbreviated wff —if it satisfieswell-formed
formula the recurrence relation below.

1. λ is an atomic formula.

2. λ = ¬(φ), where φ is a wff.

3. λ = (φ) ∧ (ψ), where φ and ψ are wff.

4. λ = (φ) ∨ (ψ), where φ and ψ are wff.

5. λ = (φ) → (ψ), where φ and ψ are wff.

6. λ = (φ) ↔ (ψ), where φ and ψ are wff.

7. λ = ∀x
(

φ
)
, where φ is a wff.

8. λ = ∃x
(

φ
)
, where φ is a wff.

A well-formed formula with no free variables is called a sentence in thesentence

first-order logic. Looking at the above definitions, a wff that has no free
variables will boil down to a proposition, meaning it will have a definite,
unambiguous truth value. Sentences will be our primary mode for
expressing conjectures, theorems, and proofs. 定義

2.2 Rules of Inference

universal
introduction φ(t) for an arbitrary t ⊢ ∀x

(
φ(x)

) If we know φ(t) and t is arbitrary,
then we can say ∀x

(
φ(x)

)
.

universal
elimination ∀x

(
φ(x)

) ⊢ φ(t) for any term t
If we have ∀x

(
φ(x)

)
,

then we can pick any t and say φ(t).

existential
introduction φ(t) for a particular t ⊢ ∃x

(
φ(x)

) If we know φ(t) for a specific term t,
then we can say ∃x

(
φ(x)

)
.

existential
elimination ∃x

(
φ(x)

) ⊢ φ(t) for a new term t
If we have ∃x

(
φ(x)

)
, then we have φ(t)

for some t that has not yet appeared.

Table 2.1: The rules of inference for quan-
tified expressions involving predicates.
Note that the “new term” referred to by
existential elimination must be a symbol
that has not yet appeared in your proof.

When we were building the propositional logic, we first defined a
syntax for our logic by introducing the logical connectives and some
other special symbols; we then gave it an algebraic semantics when we
introduced the equivalence axioms and the rules of inference. Now that
we are augmenting our language with terms, predicates, and quantifiers,
we have a similar need to establish semantics for interpreting our

first-order logic 31

new symbols. We introduce these rules in table 2.1. In addition, we
have three important theorems involving quantified expressions, each
containing a universal fragment and an existential fragment. This first
theorem establishes a form of De Morgan duality between the ∀ and ∃
quantifiers: negating a quantified sentence is equivalent to quantifying
the negated sentence using the other quantifier.

Theorem 2.1 (Negation of Quantifiers).
If φ is a predicate of at most one free variable, these equivalences hold.

¬∀x
(

φ(x)
)
≡ ∃x

(
¬φ(x)

)
¬∃x

(
φ(x)

)
≡ ∀x

(
¬φ(x)

)
定理

The next theorem illustrates a sort of distributive law for quantifiers. Be
sure to pay careful attention to the parentheses in the following theorem.

Theorem 2.2 (Distribution of Quantifiers).
Let φ be a predicate of at most one free variable and p be a proposition.
The four equivalences below are then satisfied; mind the parentheses.

∀x
(

φ(x)
)
∧ p ≡ ∀x

(
φ(x) ∧ p

)
∃x
(

φ(x)
)
∧ p ≡ ∃x

(
φ(x) ∧ p

)
∀x
(

φ(x)
)
∨ p ≡ ∀x

(
φ(x) ∨ p

)
∃x
(

φ(x)
)
∨ p ≡ ∃x

(
φ(x) ∨ p

)
Further, if ψ is also a predicate with at most one free variable and t is a
term, then the following four one-way inferences hold.

∀x
(

φ(x) ∧ ψ(x)
)
⊢ ∀x

(
φ(x)

)
∧ ψ(t) ∃x

(
φ(x)

)
∧ ψ(t) ⊢ ∃x

(
φ(x) ∧ ψ(x)

)
∀x
(

φ(x) ∨ ψ(x)
)
⊢ ∀x

(
φ(x)

)
∨ ψ(t) ∃x

(
φ(x)

)
∨ ψ(t) ⊢ ∃x

(
φ(x) ∨ ψ(x)

)
However, those inferences above are not equivalences, as shown below.

∀x
(

φ(x)
)
∧ ψ(t) ⊬ ∀x

(
φ(x) ∧ ψ(x)

)
∃x
(

φ(x) ∧ ψ(x)
)
⊬ ∃x

(
φ(x)

)
∧ ψ(t)

∀x
(

φ(x)
)
∨ ψ(t) ⊬ ∀x

(
φ(x) ∨ ψ(x)

)
∃x
(

φ(x) ∨ ψ(x)
)
⊬ ∃x

(
φ(x)

)
∨ ψ(t)

Finally, the following four equivalences hold for conditional statements.

∀x
(

φ(x) → p
)
≡ ∃x

(
φ(x)

)
→ p ∀x

(
p → φ(x)

)
≡ p → ∀x

(
φ(x)

)
∃x
(

φ(x) → p
)
≡ ∀x

(
φ(x)

)
→ p ∃x

(
p → φ(x)

)
≡ p → ∃x

(
φ(x)

)
定理

The third and final theorem concerns the order of quantifiers, importantly
pointing out that quantifiers don’t necessarily commute with each other.

Theorem 2.3 (Quantifier Shift).
If φ is a predicate of at most two free variables, then the following hold.

∀x∀y
(

φ(x, y)
)
≡ ∀y∀x

(
φ(x, y)

)
∃x∃y

(
φ(x, y)

)
≡ ∃y∃x

(
φ(x, y)

)
∀x∃y

(
φ(x, y)

)
⊬ ∃y∀x

(
φ(x, y)

)
∃x∀y

(
φ(x, y)

)
⊢ ∀y∃x

(
φ(x, y)

)
定理

32 discrete mathematics

2.3 The Art of Writing Proofs

Figure 2.3: “The purpose of life is to prove
and to conjecture.” – Paul Erdős

The way approach a proof of a statement principally depends on the
form of the what we’re trying to prove. Depending on what the state-
ment looks like, a valid proof may be allowed to take certain liberties or
be required to satisfy certain constraints. We will end this chapter with
some words of advice for writing proofs based on the rules of inference
we have established and the semantic interpretation we have attached
to our various logical symbols. Since propositions and sentences in the
first-order logic are recursive constructions, the first thing we should do
when presented a statement to prove is to recursively analyze its form.

Quantified Formulæ

If we are trying to prove a statement like ∀x
(

φ(x)
)
, we can check φ(t)

for all possible values of t. This is usually not possible, as our universe of
discourse often contains infinitely many objects. The natural alternative
is to introduce an arbitrary term t and, without making any assumptions
about t, to show that t satisfies φ. If we manage to do this without
relying on any details pertaining to t specifically, then our argument
will generalize universally. On the other hand, to prove a statement of
the form ∃x

(
φ(x)

)
, the task is to find a specific object t that we can prove

satisfies φ. Existential claims are often the most difficult kind to prove
because there is, generally, no clear strategy for how t should be found.

Figure 2.4: “Another roof, another proof.” –
Paul Erdős

Conditional Statements

Suppose we have a statement we want to prove that takes the form of a
conditional p → q. These are by far the most common kinds of statements
we will be interested in proving. This involves showing we can derive q
from p, so we first assume p in order to get to q. After assuming p is the
case, we can think of how to derive q based on its form by again going
through this analysis. Alternatively, instead of showing p → q directly,
we can always think to prove ¬q → ¬p and apply our knowledge that
a conditional statement is always equivalent to its contrapositive.

Junctions

Statements that look like p ∧ q are relatively straight-forward: we have
to show that both p and q are true. Similarly, showing p ∨ q requires
deriving one of either p or q, but we are free to choose which one to
pursue. Naturally, this will depend on what forms p and q take.

https://en.wikipedia.org/wiki/Paul_Erd%C5%91s
https://en.wikipedia.org/wiki/Paul_Erd%C5%91s

first-order logic 33

Nonconstructive Proofs

When, in the course of human events, it becomes necessary for one
people to encounter a contradiction, a decent respect to the opinions of
mankind requires that they should reject the assumptions that impelled
them there. What we mean by this is: if you are ever feeling like
a proposition p is obviously true, but its proof feels insurmountable,
try assuming ¬p and seeing what happens. If this leads you to a
contradiction, then you can invoke reductio ad absurdum and conclude p,
washing your hands of the situation.

Ex falso quodlibet can be treated as a cousin to reductio ad absurdum. It is
nowhere near as commonly used as a mode of reasoning, and to many
it is far less intuitive than a simple proof by contradiction would be,
but there are situations when it can be used to shortcut a proof in only
a couple of lines. Keep an eye out for situations in which you are asked
to prove a conditional statement p ≡ ⊥ → q with a false premise because
this rule will let you immediately reach your conclusion.

Mathematics

3

Foundations

“Finally I am becoming stupider no more.”

– Paul Erdős

With the development of the first-order logic, we finally have a formal
language for rigorous communication. This language has several incred-
ibly nice properties: it’s sufficiently expressive to prove any universal
truth, while not being so unwieldy as to admit falsehoods or contra-
dictions. The development of the first-order logic—along with Gödel’s
completeness and incompleteness theorems—marks one of humanity’s
greatest intellectual achievements, which would have ramifications
throughout nearly every field of philosophy and natural science. With
this language in hand, we are now ready to embark on our studies of
mathematics proper. The natural first question we have to answer is:
what is our universe of discourse? What are mathematical objects?

3.1 Informal Notions

Figure 3.1: Kurt Gödel was an absolutely
monumental figure in mathematical logic.
He famously showed all universal truths
in the first-order logic are provable (a
property known as completeness). Despite
this, he then infamously demonstrated
there are mathematical truths that cannot
be proven (the incompleteness theorems).

Thanks to insights made throughout the 20th and 21st centuries, there
are actually several competing ways to answer this question (though
the most modern and “computer science” of these formalisms would have
required us to take a different logical foundation than the one we did).
We will be taking a mainstream perspective that is fundamentally based
on the concept of a set, but we will introduce two other useful kinds
of objects in this section for convenience. Technically speaking, every
object in our universe of discourse will be, or could be, implemented
as a set, but it’s often distracting to think of things like numbers as
sets. As an analogy, think about the files on your computer. The pdf
file you’re reading these notes from is, fundamentally, a long binary
number stored somewhere in your computer’s memory. That number
represents this pdf in the same way a set can represent a function, or the
number 15, but if all you want to do is read these notes then it wouldn’t
be useful to interact with the binary implementation of the pdf.

https://en.wikipedia.org/wiki/Kurt_G%C3%B6del

36 discrete mathematics

Numbers

The most natural kinds of objects we should feel impelled to discuss are
the numbers, and the most fundamental kind of number is, naturally,number

the natural number. Informally, these correspond precisely with the
non-negative whole numbers. We can elegantly characterize these kinds
of numbers with the following recurrence.

1. Zero is a natural number.

2. If n is a natural number, then s(n) is also a natural number.

In the above recurrence, the notation s(n)—read “the successor of n”—iss(n)

referring to the “next (whole) number after n.” This is the defining char-
acteristic of the natural numbers, from which every other arithmetical
property springs forth: begin somewhere (i.e., at zero), and proceed
by taking steps (i.e., if n is a natural number, then so its the next one).

0 1 2 3 4 5 6
s

s

s

s

s

s
1 / 1

Figure 3.2: An initial segment of the nat-
ural number line, which begins at zero.

These will be a very important class of object for us to talk about, so we
introduce them into our universe of discourse here. For now, we will
be philosophical Platonists in the sense that we will simply believe the
natural numbers exist “out there, somewhere, in the ideal platonic realm of
forms.” After we develop a bit more theory, we will be able to be more
concrete about what precisely a number is formally-speaking.

Functions

A crucial part of the description of the natural numbers we just made is
this notion of the successor of a natural number n. This idea is usually
expressed in terms of the successor function, which begs us to define
what a function is. For the moment, we will say a function is an objectfunction

that maps inputs from a domain to outputs in a codomain in a deterministicco/domain

way. Specifically, a function must produce exactly one output for each of
its valid inputs—the output will not change unless the input changes.1 1 Think about this informal definition

and see if it agrees with the kinds of
things you have been calling “functions”
throughout your life so far.

If we have a function named f and a valid input x, then the notation we
will use to denote the output value f realizes on the input x is f (x).2

2 “ f of x,” or “ f at x.”
∀x∀y

(
x = y ⇒ f (x) = f (y)

)
With this notation, we express this idea more formally above, taking
note that the quantifiers range over the collection of valid inputs for f .
We throw function into our universe for now and revisit this later.

foundations 37

Sets

Since functions are maps that transform inputs into outputs, we are
finally driven to ask “inputs from where?” All roads eventually lead to
the idea of a collection of things. Functions map collections of inputs to
outputs. Polygons are collection of points. Numbers measure the sizes of
collection of things. In fact, any form of speech will find it hard to avoid
invoking the concept of a collection of things eventually.

A notion of such fundamental importance to mathematics should there-
fore have a central place in our universe of discourse. In the same
way binary numbers form a foundation for the files in your computer,
we will be building our mathematical universe using collections as our
fundamental unit of reference. We will call these collections sets, andset

refer to the objects they contain as their elements. For example, we mightelement

say that the number 0 is an element of the set of all natural numbers.

Figure 3.3: Ernst Zermelo (left) produced
one of the first axiomatizations of set the-
ory in 1908, which was augmented in
1922 by Abraham Fraenkel (right) and
also, independently, by Thoralf Skolem.

As the most fundamental and basic object in our universe, we will
study these first and encode their behavior in the form of axioms. Each
axiom will incorporate some intuitive property that we would expect
to be true about sets based on their inspiration as “abstract collections
of things.” This system of axioms—which we will study in the next
section—is called Zermelo-Fraenkel set theory.

A Note on Notation

entailment equivalence

Language → ↔
Metalanguage ⊢ ≡

Mathematics ⇒ ⇔

Table 3.1: With the rules of inference and
the theorems in table 1.11, we recognize
the equivalence between →,↔ syntacti-
cally and ⊢ ,≡ semantically. To simplify
our notation, we replace these symbols
with ⇒ , ⇔ respectively.

As a final note, we will be simplifying our notation from this section forward.
We had previously been introduced to the symbols → and ↔ for
expressing conditional statements within the language of the first-order
logic. In the metalanguage—the language we are using right now to talk
about the formal system we built—we used the ⊢ symbol to denote
that some conclusions are derivable from some premises, and we used
≡ to denote that two statements were logically indistinguishable. Given
the theorems we proved in the last few chapters, the line between
these two classes of symbols has been made blurrier, and it’s typical in
mainstream mathematical practice to ignore this distinction entirely. So,
we now introduce the symbol ⇒ to denote entailment as a replacement⇒
for the → and ⊢ symbols. Similarly, we introduce ⇔ as a replacement⇔
for ↔ and ≡, denoting logical equivalence in all contexts.

https://en.wikipedia.org/wiki/Ernst_Zermelo
https://en.wikipedia.org/wiki/Abraham_Fraenkel

38 discrete mathematics

3.2 Set Theory

A set is an abstraction of the idea of a collection of objects. This idea,
carried forward, naturally implies the need to communicate two kinds
of relationships between objects: equality and elementhood. These will be
the two basic predicate symbols of our theory of sets.

In order to identify objects that are the same, we introduce the binary
equality predicate: given two objects x and y, we say x = y precisely=

when x is identical to y. If you’ve seen the = symbol before in your life,
this is exactly the same symbol you’re used to, and it has the natural
properties you would expect of a predicate called “equality.”

1. ∀x(x = x) reflexivity

2. ∀x∀y
(
(x = y) ⇒ (y = x)

)
symmetry

3. ∀x∀y∀z
((

(x = y ∧ y = z)
)
⇒ (x = z)

)
transitivity

You’ll notice that these are precisely the same three properties that
logical equivalence had; these are both examples of equivalence relations.
We will assume these three statements about equality axiomatically.

The second, and more interesting, predicate relates sets to the elements
they contain. We call this predicate elementhood and denote it with the
∈ symbol. These two predicates are enough to express anything we∈
could possibly want about sets. As an example, suppose that A is a set.
By saying (0 ∈ A) ∧ (1 ∈ A), we are saying that A contains both 0 and
1 as elements, and by saying 2 ̸∈ A we claim that 2 is not an element
of A. However, saying (0 ∈ A) ∧ (1 ∈ A) doesn’t prevent A from
possibly containing more elements. If we wanted to say that A contains
only the elements 0 and 1, we would have to assert that 0 ∈ B and that
1 ∈ B, but we would also need to say ∀x(x ∈ B ⇒ (x = 0 ∨ x = 1)).
This asserts that not only are 0 and 1 among the elements of A, but
that any element of A must be one of those two. Now, notice that we
can rewrite 0 ∈ A ∧ 1 ∈ A as ∀x((x = 0 ∨ x = 1) ⇒ x ∈ A). So,
saying that A contains exactly the elements 0 and 1 tells us that being 0
or being 1 is an equivalent condition for being an element of A. We can
write this as ∀x(x ∈ A ⇔ (x = 0 ∨ x = 1)). This would be a lot to
write every time, so let’s introduce some notation.

Definition 3.1 (Set Notation).
Given finitely many terms x0, x1, . . . xn−1, we denote by {x0, x1, . . . xn−1} “The set containing x0, x1, . . . xn−1.”{x0, . . . xn−1}
the set whose elements are exactly the objects x0, x1, . . . xn−1. We write
out each element of the set explicitly, separating the elements with
commas, with the understanding that the following is true for any z.

z ∈
{

x0, x1, . . . xn−1
}

:⇔ (z = x0) ∨ (z = x1) ∨ . . . (z = xn−1)

foundations 39

This is often called set builder notation. From figure 3.6, we can use
this notation to say A = {0, 0, 1, 2} and B = {0, 2, 1} whereas C =

{0, 1, 3, 2}. Notice that set builder notation is extremely restrictive; it
only lets us describe sets with finitely many elements, and it forces us
to write them all out. What if we want to talk about a set with so many
elements that it would be annoying—or impossible—to write them all
down? How would we write down the set of even natural numbers, or
the set of prime numbers, or even the set of natural numbers itself? To
solve this problem, we introduce set comprehension notation.

z ∈
{

x
∣∣ φ(x)

}
:⇔ φ(z)

With this notation, we can pick a predicate φ and refer to the collection
of all those things that satisfy that predicate by writing {x | φ(x)}. In{x | φ(x)} “The set of all x such that φ(x).”
this way, we can refer to the set of even natural numbers by writing
{x | x ∈ N ∧ “x is even”}. We don’t yet have a formal way of expressing

“x is even;” once we do, x ∈ N ∧ “x is even” will be a predicate.

定義

0
1

5
2

3

1 / 1

Figure 3.4: The orange, red, and purple sets
are all subsets of the yellow set. We can
see purple ⊆ orange, but orange ̸⊆ purple.
Further, orange ̸⊆ red, and red ̸⊆ orange,
implying purple ̸⊆ red, and red ̸⊆ purple.

The elementhood predicate is our fundamental relational symbol (apart
from equality) between sets, but this predicate naturally implies another
interesting relationship that two sets can share. For example, the blue
set in figure 3.5 represents the set of all odd natural numbers, which
we just learned can be written as {x | x ∈ N ∧ “x is odd”} using set
comprehension notation. It should be pretty clear that every element
of this set is a natural number. The same is true about {0, 1, 2} and
{0, 1, 2, 3}. Every element of each one of these sets is also an element
of N. Taking this further, the elements of {0, 1, 2} are each {0, 1, 2, 3}.
This emergent relationship is captured by the definition below.

Definition 3.2 (Subset).
Given two sets x and y, we say that x is a subset of y, denoted with the
notation x ⊆ y, when every element of x is also an element of y.x ⊆ y

x ⊆ y :⇔ ∀z
(
z ∈ x ⇒ z ∈ y

)
We can now see {x | x ∈ N ∧ “x is odd”} ⊆ N and {0, 1, 2} ⊆ {0, 1, 2, 3}.
However, {0, 1, 2, 3} ̸⊆ {0, 1, 2} because 3 ∈ {0, 1, 2, 3} but 3 ̸∈ {0, 1, 2}.

定義

40 discrete mathematics

0 1 2 3 4
5

6
7

. . .

. . .

1 / 1

Figure 3.5: The set of all natural numbers,
the smallest set N for which 0 ∈ N and
∀x(x ∈ N ⇒ s(x) ∈ N), shown with the
subset of odd natural numbers.

Infinity

We should keep one thing clear: these definitions do not assert anything!
Just because we now have the ability to write something down with this
new notation doesn’t mean the notation refers to an existing object. To
formally have sets to talk about, we need to introduce them with either
an axiom or a proof. There is, of course, a set that has been looming over
us this whole time—the set of natural numbers—that we certainly want
to exist. Towards that goal, we introduce one more definition.

Definition 3.3 (Inductive Set).
We say a set I is inductive if 0 ∈ I and ∀x

(
x ∈ I ⇒ s(x) ∈ I

)
. 定義inductive

Axiom 0 (Infinity).
∃x
(

x is inductive ∧ ∀y
(
y is inductive ⇒ x ⊆ y

))
. 公理

The set described by axiom 0 is—in a sense—the “smallest” inductive set,
which is precisely the set of natural numbers.1 Therefore, axiom 0 estab- 1 The fact that the smallest inductive set

is actually the set of natural numbers is a
theorem, but we will not take the time nor
effort to prove it here.

lishes the existence of the set of natural numbers. Once this understanding
is clear, it is common to make the following recursive declaration.

N :=
{

x
∣∣∣ x = 0 ∨ ∃y

(
y ∈ N ∧ x = s(y)

)}
The rest of this chapter introduces six more axioms for set theory, each
encoding a particular piece of intuition about how sets should behave.

Extensionality

Sets are entirely determined by their elements. Because sets abstract the
idea of a collection of objects, everything we need to know about a set
should determined by the elements it contains. We should expect that
looking inside the and comparing the elements of two sets to answer the
question “are these two sets equal?”

In figure 3.6, we have the sets A, B, C, and D. We can see that 0 ∈ A,
1 ∈ A, and 2 ∈ A, and we also have that 0 ∈ B, 1 ∈ B, and 2 ∈ B.
Even though the elements appear with different frequencies and in
different positions between the two sets, it must be that A = B because
they have all the same elements. However, we can see that 3 ∈ C while

foundations 41

3 ̸∈ A, implying that A ̸= C. In general, we should then expect sets
to be equal precisely when they have the same elements, and that sets
with the same elements should always be equal.

Axiom 1 (Extensionality).
∀x∀y

(
(x = y) ⇔ ∀z

(
z ∈ x ⇔ z ∈ y

))
. 公理

This relationship between = and ∈ is exactly what the axiom of exten-
sionality encodes. In our example above, we can now use this axiom
to prove that A = B by showing that ∀z(z ∈ A ⇔ z ∈ B). In fact,
this is essentially what we’ve done in the preceding paragraph; be-
cause A and B are both small, finite sets, by listing all the elements
of each set and showing that they’re all the same, we have a proof of
∀z(z ∈ A ⇔ z ∈ B). Extensionality tells us this means A = B.

A B

C D0
0 1

2

0

1

2
0
1

2

3

1 / 1

Figure 3.6: A visual representation of two
sets. The purple set has the same elements
as the red set, the figures refer to the same
set, letting us infer A = B. The orange
set contains an element not present in the
other two sets, so C ̸= A and C ̸= B. The
yellow set has no elements, so it is empty.

By the same token, if we wanted to show that A ̸= C, we would need
to show ¬∀z(z ∈ A ⇔ z ∈ C). We decompose this statement below.

¬∀z(z ∈ A ⇔ z ∈ C) ≡ ∃z¬(z ∈ A ⇔ z ∈ C)
≡ ∃z¬

(
(z ∈ A ⇒ z ∈ C) ∧ (z ∈ C ⇒ z ∈ A)

)
≡ ∃z

(
¬(z ∈ A ⇒ z ∈ C) ∨ ¬(z ∈ C ⇒ z ∈ A)

)
≡ ∃z

(
¬(z ̸∈ A ∨ z ∈ C) ∨ ¬(z ̸∈ C ∨ z ∈ A)

)
≡ ∃z

(
(z ∈ A ∧ z ̸∈ C) ∨ (z ∈ C ∧ z ̸∈ A)

)
So, what we would need to do is find an element z that’s in one of the
two sets but not in the other. Since we saw that 3 ∈ C but 3 ̸∈ A, that’s
exactly what it means for A ̸= C according to the axiom of extensionality.

Lemma 3.1.
∀x∀y

(
x = y ⇔ (x ⊆ y) ∧ (y ⊆ x)

)
. 引理

Proof. Let x and y be sets. Observe the following chain of equivalences.

x = y ⇔ ∀z
(
z ∈ x ⇔ z ∈ y

)
by extensionality

⇔ ∀z
((

z ∈ x ⇒ z ∈ y
)
∧
(
z ∈ y ⇒ z ∈ x

))
⇔ ∀z

(
z ∈ x ⇒ z ∈ y

)
∧ ∀z

(
z ∈ y ⇒ z ∈ x

)
⇔
(

x ⊆ y
)
∧
(
y ⊆ x

)
by definition

Therefore, x = y ⇔ (x ⊆ y) ∧ (y ⊆ x). q.e.d.

42 discrete mathematics

What about the set D? In the figure, it would seem like D has no
elements at all. Extensionality reveals to us that this means D cannot
equal any of A, B, nor C. In fact, D can’t be equal to any set containing
any elements because that set would contain something D doesn’t.

Definition 3.4 (Empty Set).
We say that a set x is empty iff ∀y(y ̸∈ x). We also define the following.empty

∅ := {z | z ̸= z}

The referent of the ∅ symbol above is called the empty set. 定義∅

If we think of sets as abstract containers, it should be easy to conceptual-
ize an empty container, which is exactly what ∅ would correspond to.
With such a suggestive name, we should be able to say that ∅ is empty,
right? Let’s prove this as our first real theorem of set theory.

Theorem 3.1 (The Empty Set is Empty).
∀x(x ̸∈ ∅). 定理

Proof. Let x be a set. Suppose, towards a contradiction, that x ∈ ∅.
Then, we know x ∈ {z | z ̸= z} by definition of the empty set. This
further tells us, by the definition of set comprehension notation, that
x ̸= x. However, we know x = x. � Therefore, x ̸∈ ∅. q.e.d.

Based on how D is drawn in figure 3.6, D empty since ∀x(x ̸∈ D). Does
that mean that D = ∅, or is it possible to have multiple distinct empty
sets? As you might have guessed by what the axiom of extensionality
says, there is only one empty set because all empty sets are equal to each
other, justifying the name the empty set for ∅.

Theorem 3.2 (The Empty Set is Unique).
∀x
(
∀y
(
y ̸∈ x

)
⇒ x = ∅

)
. 定理

Proof. Let x be a set such that ∀y
(
y ̸∈ x

)
. We will show x has all the

same elements as ∅. Let z be a set. We will show z ∈ x ⇔ z ∈ ∅.

If z ∈ x, notice z ̸∈ x follows from ∀y
(
y ̸∈ x

)
. Thus, z ∈ ∅ by explosion. Recall ex falso quodlibet; anything follows

from a contradiction.If z ∈ ∅, then z ̸= z by definition; but, z = z. So, z ∈ x by explosion.

Thus, ∀z(z ∈ x ⇔ z ∈ ∅). So, x = ∅ by the axiom of extensionality.
q.e.d.

It’s important to note that none of the prior analyses nor theorems prove
that ∅ exists, only that there can be at most one empty set. We will
need to wait until the axiom of separation to discuss this.

As you may have guessed, the empty set is the smallest set in a precise
sense. Given any two sets X and Y , we can define an ordering by saying

foundations 43

that X is “less than” Y in when X ⊆ Y . With this notion of ordering
induced by the ⊆ relation, we can see that the ∅ is ordered below every
other set, making it minimal in the ⊆ ordering among all sets. Since
there is only one empty set, ∅ is the minimum of this ordering.

Theorem 3.3.
∀x(∅ ⊆ x). 定理

Proof. Let x be a set. Towards a contradiction, suppose ∅ ̸⊆ x. Then,
there exists some z such that z ∈ ∅ ∧ z ̸∈ x by definition. This implies
z ∈ ∅; however, we know ∀w(w ̸∈ ∅). � Therefore, ∅ ⊆ x. q.e.d.

We might be lead to ask: is there a maximum set with respect to this
⊆ ordering? We will answer this question in a short while. In the
meantime, this is not the only nice property of the set inclusion ordering
induced by the ⊆ relation. In fact, this relation has all the defining
properties of a partial order: reflexivity, antisymmetry, and transitivity.

Theorem 3.4 (Set Inclusion is a Partial Order).
The following three statements hold about the ⊆ relation.

1. ∀x(x ⊆ x) reflexivity

2. ∀x∀y
(
((x ⊆ y) ∧ (y ⊆ x)) ⇒ x = y

)
. antisymmetry

3. ∀x∀y∀z
(
((x ⊆ y) ∧ (y ⊆ z)) ⇒ x ⊆ z

)
. transitivity

This makes ⊆ an example of a partial order on the class of sets. We
prove the reflexive property below, leaving the rest as exercises. 定理

Proof. Let x be a set. Let z be a set and recall that (z ∈ x) ⇒ (z ∈ x).
Therefore, since z was arbitrary, we have x ⊆ x by definition. q.e.d.

Pairing

If you remember from our earlier discussion of set notation, we have
a way of expressing “the set containing a, b, and c” by writing down
{a, b, c}. However, just having the ability to say something doesn’t
make what we’re saying meaningful. If we want to be sure that {a, b, c}
actually refers to an object that exists, then we will either need proof
that it exists, or we’ll need to rely on an axiom to grant us its existence.
This next axiom partially addresses the problem with our set notation
by guaranteeing that set builder notation always refers to an existing set
so long as all of its elements also exist.

Axiom 2 (Pairing).
∀x∀y∃z(z = {x, y}). 公理

44 discrete mathematics

E F
0 1 7 2

3
E F

1 / 1

Figure 3.7: Given the sets {0, 1, 7} and
{2, 3} exist, the pairing axiom asserts the
existence of

{
{0, 1, 7}, {2, 3}

}
.

By definition, we call a set a singleton if it contains exactly one element
and a doubleton if it contains exactly two elements. The pairing axiom
makes the straight-forward assertion that {x, y} exists so long as x and
y also exist—this set {x, y} may be a singleton if x = y or a doubleton if
x ̸= y. In other words, this axiom lets us construct unordered pairs.

Separation

We can similarly express “the set of all things that make φ(·) true” for any
predicate φ by writing {x | φ(x)}, but again we have the same problem
regarding the existence of the referent. If you think this obsession might
be needlessly neurotic, let’s take a moment to see what happens if we
pretend that {x | φ(x)} exists for any predicate we feel like; after all, it
should be natural to say that “the set of all x with some property” exists if
a set is simply an abstract collection of objects.

Define the predicate ρ(s) := “s ̸∈ s.” Just as a sanity check, remind
yourself about A from figure 3.6 and notice that A ̸∈ A because A is
not 0, 1, nor 2. This means A satisfies ρ, making ρ(A) is true—the
point here being that ρ is sometimes true for some sets. Let’s consider
R :=

{
x
∣∣ (x)

}
= {x | x ̸∈ x} and analyse the truth value of ρ(R).

Figure 3.8: Russell’s paradox is named
after eminent mathematician and philoso-
pher Bertrand Russell. He first men-
tioned this paradox in a letter to logician
and philosopher Gottlob Frege as a cri-
tique of his “Basic Law V,” which was
essentially an unrestricted form of com-
prehension for logical functions.

If ρ(R) is the case, then R ̸∈ R by the definition of ρ. That means that
R ∈

{
x
∣∣ ρ(x)

}
, implying R ∈ R. � What happens if ¬ρ(R) instead?

Then, ¬(R ̸∈ R), which simply says R ∈ R, implying R ∈ {x | ρ(x)}
by definition. However, this would mean ρ(R), so that R ̸∈ R. �

It seems like no matter what we do, we run into a problem. The mere
existence of something like R is inherently contradictory. We cannot allow
things like R to exist or they would introduce a contradiction into our
system. This observation—that the “set” of all sets that don’t contain
themselves doesn’t exist—is known as Russell’s paradox.Russell’s

paradox
This paradox stemmed from our reckless use of unrestricted compre-
hension. If we restrict comprehension only to existing sets, we avoid
this issue. Instead of demanding {x | φ(x)} always exists, we should
separate off those elements satisfying φ from an already existing set. Technically, separation is called an axiom

schema because it is actually one axiom
for each predicate φ. We can’t write this
as just one sentence because we can only
quantify over objects, not predicates.

Axiom 3 (Schema of Separation).
For any predicate φ with at most one free variable, the following is true.
∀x∃y

(
y = {z | z ∈ x ∧ φ(z)}

)
. 公理

https://en.wikipedia.org/wiki/Bertrand_Russell
https://en.wikipedia.org/wiki/Gottlob_Frege

foundations 45

Power

Since the axiom of separation gives us the ability to take arbitrary subsets
of existing sets, you would hope to be able to talk about the collection
of all those subsets as its own set.

Definition 3.5 (Power Set).
Given a set x, we define the power set of x to be the set of all possiblepower set

subsets of x. We denote this by writing P(x) := {z | z ⊆ x}. 定義P(x)

Remarkably, despite the litany of axioms we have so far, we don’t
actually have any guarantee that the power set of an arbitrary set exists!
We need to introduce a whole new axiom to assert this fact.

Axiom 4 (Power).
∀x∃y(y = {z | z ⊆ x}). 公理

As a small example, consider the sets G := {0, 1} and H := {2, 3, 5}.
Their respective power sets are given below.

P(G) =
{
{}, {0}, {1}, {0, 1}

}
=
{
∅, {0}, {1},G

}
P(H) =

{
{}, {2}, {3}, {5}, {2, 3}, {3, 5}, {2, 5}, {2, 3, 5}

}
=
{
∅, {2}, {3}, {5}, {2, 3}, {3, 5}, {2, 5},H

}
You’ll notice that P(G) has 4 elements while G has 2, and P(H) has
8 elements while H has 3; this is no coincidence: power sets grow
exponentially in the size of their input—hence the name power set.1 You 1 We will prove this interesting fact later.

might also notice that ∅ and the set itself are each elements of the
power sets in our example above; this generalizes to all sets.

Lemma 3.2.
∀x(∅ ∈ P(x) ∧ x ∈ P(x)). 引理

Union

So far, the we can only make new sets by pairing up existing sets using
axiom 2, by taking subsets using axiom 3, and collecting all those subsets
together using axiom 4. We would also like to merge two sets together,
combining all of their elements all in one set.

Definition 3.6 (Union of Two Sets).
Given two sets x and y, we define the union of those two sets asunion

x ∪ y :=
{

z
∣∣ z ∈ x ∨ z ∈ y

}
. This is the set consisting of all of thex ∪ y

elements of x in addition to all of the elements of y together. 定義

46 discrete mathematics

0 1

2

3

4 5

6

7

8

9

1 / 1

Figure 3.9: In this figure, the orange
set is {0, 1, 2, 3, 4, 9} and the red set is
{3, 5, 6, 7, 8, 9}. The yellow set is the
union of the two sets, consisting of
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The purple set is
their intersection, consisting of {3, 9}. The
green set consisting of {0, 1, 2, 4} is the
difference {0, 1, 2, 3, 4, 9} \ {3, 9}.

Now, if we were to stop here and introduce an axiom along the lines
of “the union of two existing sets always exists,” then we would only ever
be able to take the union of finitely many sets.1 Why should we limit 1 Convince yourself of this. How would

you take the union of infinitely many sets
if you’re only allowed pairwise unions?

ourselves like this? If we’ve reasonably gathered some amount of sets
together, why shouldn’t we be allowed to take the union of all of them
together? Along the same lines, why not give ourselves the freedom to
iterate the “union operation” over the elements of an arbitrary set?

Definition 3.7 (Union Over a Set).
Given a set x, we define the union over x, meaning the iterated unionunion over

over the elements of x, as ∪x := {z | ∃y(y ∈ x ∧ z ∈ y)}. 定義∪x

You’ll notice that the definition above takes a set and gathers the elements
of all of its elements into a set by themselves. As an example, consider
the set J :=

{
{0, 1, 2}, {3, {5, 7}}, {{8}, 9}

}
. The union over J is then

given by ∪J =
{

0, 1, 2, 3, {5, 7}, {8}, 9
}

. We will dedicate our next
axiom to these kinds of iterated unions, asserting that “the iterated union
over the elements of an existing set exists.”

Axiom 5 (Union).
∀x∃y

(
y = ∪x

)
. 公理

Notice that the union axiom only asserts the existence of unions over sets
that exist; it does not say that the union of two existing sets exists. It’s
up to us now to prove it for ourselves.

Theorem 3.5 (Existence of Unions).
∀x∀y∃z

(
z = x ∪ y

)
. 定理

Proof. Let x and y be sets. By the pairing axiom, τ := {x, y} exists. Then,
we know that ∪τ exists by the union axiom, with the recognition that
∪τ = {b | ∃a(a ∈ τ ∧ b ∈ a)} by definition. Recall that, by definition,
x ∪ y = {w | w ∈ x ∨ w ∈ y}. We now witness the following for any z.

z ∈ ∪τ ⇔ z ∈
{

b
∣∣ ∃a(a ∈ τ ∧ b ∈ a)

}
by definition of ∪τ

⇔ ∃a(a ∈ τ ∧ z ∈ a) by definition

⇔ ∃a(a ∈ {x, y} ∧ z ∈ a) by definition of τ

foundations 47

⇔ ∃a((a = x ∨ a = y) ∧ z ∈ a) because τ = {x, y}
⇔ z ∈ x ∨ z ∈ y by extensionality

⇔ z ∈ {w | w ∈ x ∨ w ∈ y} by set comprehension notation

⇔ z ∈ x ∪ y by definition of x ∪ y

Thus, ∪τ = x ∪ y, so x ∪ y exists. q.e.d.

The schema of separation synergizes well with the union axiom, allowing
us to prove that many useful set-theoretic constructions are possible.
Two important ones that we would be remiss to leave out are the
intersection and the difference of two sets. If x and y are sets, then their
intersection is the set of all elements they share in common. This is definedintersection

as x ∩ y :=
{

z
∣∣ z ∈ x ∧ z ∈ y

}
. The axiom of separation easily guaranteesx ∩ y

us that x ∩ y always exists.

Theorem 3.6 (Existence of Intersections).
∀x∀y∃z(z = x ∩ y). 定理

As with ∪x, we define what it means to iterate the intersection over x,intersection
over

collecting those things that are shared in common by all elements of
x. We define this by ∩x :=

{
z
∣∣ ∀y(y ∈ x ⇒ z ∈ y)

}
. Although we∩x

axiom 5 tells us that iterated unions always exist, do not mistakenly
presuppose that ∩x should behave the same way! As an exercise, think
about ∩∅.

The difference of x and y is the set obtained by removing every element ofset minus

y from x. This is bizarrely denoted x \ y :=
{

z
∣∣ z ∈ x ∧ z ̸∈ y

}
, notationx \ y

which we are not responsible for. As with unions and intersections of
two sets, the difference of two arbitrary sets always exists.

Theorem 3.7 (Existence of Differences).
∀x∀y∃z(z = x \ y). 定理

Regularity

Figure 3.10: The axiom of regularity was
introduced by John von Neumann to fa-
cilitate the study of the ordinal numbers.
An important practical consequence of
this axiom is that sets are not allowed to
be elements of themselves.

You may have wondered by this point, either based on the problem
sets or out of your own curiosity, whether or not sets can contain
themselves as elements. You may even believe that, because of results
like Russell’s paradox, sets obviously can’t contain themselves. While
your intuition would be inline with mainstream mathematics and all
of the physical intuition surrounding sets, there is actually nothing
so far that would formally prohibit x ∈ x to be true about some set x.
As simple people—interested in doing reasonable and mostly computable
mathematics—we should adopt the mainstream view that sets like
x = {x} and {x, y} = {{y}, {x}} shouldn’t exist.

https://en.wikipedia.org/wiki/John_von_Neumann

48 discrete mathematics

Axiom 6 (Regularity).
∀x
(

x ̸= ∅ ⇒ ∃y(y ∈ x ∧ x ∩ y = ∅)
)
. 公理

This strangely written axiom has far-reaching consequences, one of
which is that there are no infinitely descending ∈-chains. For our purposes,
we only need it to establish the fact that sets do not contain themselves.

Theorem 3.8 (Well-Foundedness of Elementhood).
∀x(x ̸∈ x). 定理

Proof. Let x be a set and suppose that x ∈ x towards a contradiction.
Consider y := {z | z ∈ x ∧ z = x}, which the axiom of separation assures
us exists. Note y = {x} by extensionality since ∀z

(
z ∈ y ⇔ z = x

)
.

Then, y ̸= ∅, so the axiom of regularity says ∃z(z ∈ y ∧ y ∩ z = ∅).

∃z
(
z ∈ y ∧ y ∩ z = ∅

)
⇔ ∃z

(
z ∈ {x} ∧ {x} ∩ z = ∅

)
⇔ {x} ∩ x = ∅

This implies y ∩ x = ∅. However, since x ∈ y and x ∈ x, we know
x ∈ y ∩ x, so that y ∩ x ̸= ∅. � Therefore, x ̸∈ x. q.e.d.

The axiom of regularity also prohibits the existence of “universal sets,”
objects U with the property ∀x(x ∈ U). For instance, “the set of all sets,”
sometimes called “the universe,” is typically denoted by U := {z | z = z}.
This “set” is not really a set according to our rules because, if it were,
then we would immediately know U ∈ U because U = U, contradicting
the fact that the ∈ predicate is well-founded that we just proved.

Theorem 3.9 (The Universe Does Not Exist).
¬∃x∀y(y ∈ x). 定理

Proof. Towards a contradiction, suppose there exists a universal set x
characterized by ∀y(y ∈ x). We then obtain x ∈ x, contradicting the fact
that ∀z(z ̸∈ z). � Therefore, there is no x such that ∀y(y ∈ x). q.e.d.

Another Note on Notation

We will introduce one last bit of incredibly convenient notation here.
Given any set X and predicate φ, we have a more compact way of
expressing “φ(x) for all x in X ” and “there exists x in X such that φ(x).”

“For all x in X , φ(x).”

“There is some x in X such that φ(x).”

(∀x ∈ X)
(

φ(x)
)

:⇔ ∀x
(

x ∈ X ⇒ φ(x)
)

(∃x ∈ X)
(

φ(x)
)

:⇔ ∃x
(

x ∈ X ∧ φ(x)
)

Notice, when we say (∀x ∈ X)(φ(x)), that this is all one sentence. We
are not saying “(∀x ∈ X)” nor “(φ(x))” nor any combination of those
statements by themselves because these independent expressions are
not sentences! They do not mean anything by themselves!

foundations 49

A statement like “(∀x ∈ X)” is nonsense on its own because nothing
is actually being said about the x elements of X ; there is no clause in
this expression, so it’s not a sentence. Similarly, “(φ(x))” would be
nonsense unless we know who x is; sentences can’t contain free variables.

z ∈ {x ∈ X | φ(x)} :⇔ z ∈ X ∧ φ(z)

We finish by introducing, above, a compact analogue of the restricted
set comprehension notation that axiom 5 facilitates. This new notation
{x ∈ X | φ(x)} is read as follows: “the set of all x in X such that φ(x).”

3.3 Functions

Central to the history, tradition, and practice of mathematics is the
concept of a function—is a special kind of relation between two sets in
which every element of the first set has a unique corresponding element
in the second set. We spoke about these intuitively in section 3.1, but it
has come time to think about how to define these within set theory.

Suppose we have two sets A and B. A function from A to B establishes
an associating between the elements a ∈ A and the elements b ∈ B
in a way that corresponds intuitively with our notions of input and
output respectively. If we wanted to pair up these inputs with their
corresponding outputs, we might first think to construct the unordered
pair {a, b}; however, it should be clear that is fails to represent which
element of {a, b} was the input and which one was the output, since
{a, b} and {b, a} are indistinguishable in set theory. We need a way of
establishing sets in which the order of the elements also matters.

To distinguish them from unordered pairs, we will denote an ordered
pair using (·, ·) parentheses instead of {·, ·} brackets. Two ordered
pairs (x1, y1) and (x2, y2) should be equal iff all of their corresponding
coordinates are equal in all the same positions.

(x1, y1) = (x2, y2) ⇔ (x1 = x2 ∧ y1 = y2)

This is the characterization of ordered pairs; any definition or implemen-
tation using sets that we come up with must enforce this relationship, or
it wouldn’t really capture what we mean by “ordered pair.” The following
definition given by Kazimierz Kuratowski accomplishes precisely this.

Definition 3.8 (Ordered Pair).
Given sets x and y, we define the ordered pair whose first coordinate isordered pair

x and second coordinate is y as (x, y) := {{x}, {x, y}}. 定義(x, y)

Lemma 3.3.
∀a∀b∀x∀y

((
(a, b) = (x, y)

)
⇔
(
a = x ∧ b = y

))
. 引理

https://en.wikipedia.org/wiki/Kazimierz_Kuratowski

50 discrete mathematics

This gives us a way of associating the elements of two sets by con-
structing sets of ordered pairs whose coordinates are elements of
each respective set. Thus, a relation between A and B is nothing
more than a particular set of ordered pairs (a, b) where a ∈ A and
b ∈ B. More precisely, we say R is a relation between A and B whenrelation

R ⊆ {(a, b) | a ∈ A ∧ b ∈ B} for any two sets A and B. The largest
relation between two sets is the set of all such possible ordered pairs.
This important construction—named in honor of René Descartes—is
defined below with its own dedicated notation.

Definition 3.9 (Cartesian Product).
The Cartesian product of two sets x and y is the set of all possible orderedset product

pairs between them. Formally, x × y := {(a, b) | a ∈ x ∧ b ∈ y}. 定義x × y

Importantly, the Cartesian product of any two sets always exists. This
conveniently means that whenever we are interested in relating the
elements of two sets—or of constructing a function between two sets—
we won’t have to worry about existence questions thanks to the axiom
of separation because it will simply be a subset of the Cartesian product.

Theorem 3.10 (Existence of Cartesian Products).
∀x∀y∃z(z = x × y). 定理

A function, as we previously motivated, is a special kind of relation: one
in which every element of the domain has a unique image in the codomain.
This means that a function f from A to B should, first and foremost,
be a relation f ⊆ A×B. Then, we should impose the special condition
on the ordered pairs (a, b) ∈ f that, for every a ∈ A, there always exists
exactly one b ∈ B such that a is paired up with b in f .

Definition 3.10 (Function).
Given sets X and Y , we introduce the notation f : X → Y to indicatef : X → Y
that f is a function from X to Y . We define what this means below.

f ⊆ X ×Y ∧ (∀x ∈ X)(∃!y ∈ Y)
((

x, y
)
∈ f
)

The sets X and Y are called the domain and codomain of f respectively.
When we know that f is a function, we can replace the ordered pair
notation above with the traditional functional notation below.

f (x) = y :⇔ (x, y) ∈ ff (x) = y

This convenient notation lets us rewrite the right-hand side of our
definition as (∀x ∈ X)(∃!y ∈ Y)(f (x) = y). 定義

https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

foundations 51

3.4 Lifting the Veil

Equipped with the axioms of set theory, we are now ready to discover
who the natural numbers really are with, of course, a recursive definition.

0 := ∅
s(n) := n ∪ {n}

We begin by establishing that the first natural number is the empty set. We
then obtain the successors of zero by iteratively adding one new element
to the previous natural number. If we apply this definition, we can
compute that the natural number 1 is actually the set containing 0.

1 := s(0) = 0 ∪ {0} = ∅∪ {∅} = {∅} = {0}

A similar computation reveals that 2 is the set containing both 0 and 1.

2 := s(1) = 1 ∪ {1} = {∅} ∪ {{∅}} = {∅, {∅}} = {0, 1}

If we continue this process, you’ll start to notice a pattern emerging.

1 / 1Figure 3.11: The natural 0 as a set.

1 / 1Figure 3.12: The natural 1 as a set.

1 / 1Figure 3.13: The natural 2 as a set.

1 / 1Figure 3.14: The natural 3 as a set.

0 = ∅ = {}
1 = {∅} = {0}
2 =

{
∅, {∅}

}
= {0, 1}

3 =
{
∅, {∅},

{
∅, {∅}

}}
= {0, 1, 2}

4 =

{
∅, {∅},

{
∅, {∅}

}
,
{
∅, {∅},

{
∅, {∅}

}}}
= {0, 1, 2, 3}

...
...

This characterization results from 0 = ∅ and the following theorems.

Theorem 3.11 (Successor Function has no Fixed Points).
∀x
(

x ̸= x ∪ {x}
)
. 定理

Theorem 3.12 (Every Natural Number is Transitive).
(∀x ∈ N)(∀y ∈ x)(∀z ∈ y)(z ∈ x). 定理

These two facts show us every natural number is the set of all the natural
numbers that came before it. This lets us define (m < n) :⇔ (m ∈ n) form < n

any natural numbers m, n ∈ N,1 inspiring the following notation.2 1 We say m ⩽ n if (m < n) ∨ (m = n).
2 Note that this notational definition only
applies to natural numbers.JnK := {x ∈ N | x ∈ n} = {x ∈ N | x < n}

We can clearly see that n = JnK for any n ∈ N. While this might seem
like useless notation at first, it will be useful in the future when we
need to make a natural number as a set and as a number. It should be
less confusing if we use notation like m + n when treating them like
numbers and JmK∪ JnK when treating them like sets.

4

Arithmetic
“Don’t for heaven’s sake, be afraid of talking nonsense! But you
must pay attention to your nonsense.”

– Ludwig Wittgenstein

4.1 The Categorical Structure of Arithmetic

Now that we know who the natural numbers are, we’d like to be able to
use them for something, so we need to understand their basic structure
and behavior. First, let’s remind ourselves of an obvious fact.

0 ∈ N.

Secondly, the successor of any natural number is also a natural number.

(∀n ∈ N)(s(n) ∈ N).

However, zero being the first natural number means it has no predecessors.

(∀n ∈ N)(0 ̸= s(n)).

Further, numbers are equal precisely when they have the same successor.

(∀n, m ∈ N)
((

s(n) = s(m)
)
⇒ (n = m)

)
.

Finally, and most importantly, every natural number can eventually be
reached by starting at zero and iteratively finding successors. This gives us a
remarkably powerful way to prove statements about the naturals. As a note: it is not difficult to show that

the reverse direction of this statement is
also true, but it is much less interesting
than the forward direction given here.

(
φ(0) ∧ (∀k ∈ N)

(
φ(k) ⇒ φ

(
s(k)

)))
⇒ (∀n ∈ N)(φ(n))

Given a predicate φ, the above statement proclaims that φ(x) is true
about every natural number x if we first know φ(0) is true and then,
whenever φ(k) is true for an arbitrary k ∈ N, the statement φ(s(k))
about the next natural number is induced into being true as well. This is
known as mathematical induction, a concept spiritually dual to recursion.induction

arithmetic 53

Each of the aforementioned statements about N is a theorem of set
theory, and we have taken great care in setting up our axioms and
definitions so that this would be the case. Although some parts of this
journey may have felt delicate, arbitrary, or contrived, the remarkable
fact of the matter is that these five properties canonically represent the
essence of the natural numbers. Any structure that also satisfies these
five properties will encodes within it a copy of the natural numbers. Any
structure arranged like the natural numbers behaves like the natural numbers.

At the end of the day, the specific choices we made to implement the
natural numbers set-theoretically were fundamentally unimportant.
What matters is that we have a representation of N so that we can reason
about them formally. The following section will define many of the
operations on N you may be familiar with, but you should keep in
mind that any definitions we make—any theorems we prove—about N

will also be true about anything that looks like N.

Definition 4.1 (Addition & Multiplication).
The two basic algebraic operations on N are addition and multiplication.

n + 0 := n n · 0 := 0

n + s(m) := s(n + m) n · s(m) := (n · m) + n

We define these binary operations above through recursion on the
second argument while keeping the first argument fixed. 定義

Definition 4.2 (Exponentiation & Tetration).
We also define how to exponentiate and tetrate natural numbers below.

n0 := 1 n ↑↑ 0 := 1

ns(m) := n · nm n ↑↑ s(m) := nn↑↑m

Again, these are recursive definitions in the second argument that take
an arbitrary natural number as their first argument. 定義

Definition 4.3 (Sums & Products).
Given a function f : N → N, we define the sum and product of the first
n values of this function recursively below.

0

∑
i=0

f (i) := f (0)
0

∏
i=0

f (i) := f (0)

s(n)

∑
i=0

f (i) :=

(
n

∑
i=0

f (i)

)
+ f (s(n))

s(n)

∏
i=0

f (i) :=

(
n

∏
i=0

f (i)

)
· f (s(n))

We can generalize these definitions to cases where the lower index is
nonzero as long as the upper index dominates the lower index. 定義

54 discrete mathematics

Theorem 4.1.
(∀n ∈ N)(s(n) = n + 1). 定理

Proof. Let n ∈ N and observe the following.

n + 1 = n + s(0) since 1 := s(0)

= s(n + 0) by definition of addition

= s(n) by definition of addition

Therefore, we have s(n) = n + 1. q.e.d.

Theorem 4.2.
(∀n ∈ N)(n + 0 = n). 定理

Proof. Let n ∈ N and notice that n+ 0 = n by the definition of addition.
q.e.d.

Theorem 4.3.
(∀n ∈ N)(0 + n = n). 定理

Proof. We will prove this by induction.

Basis Step:
Observe that 0 + 0 = 0 by the definition of addition.

Inductive Step:
Let k ∈ N and assume 0 + k = k. We will now show that 0 + s(k) = s(k).
Bear witness to the following deduction.

0 + s(k) = s(0 + k) by definition of addition

= s(k) by the inductive hypothesis

Therefore, we conclude (∀n ∈ N)(0 + n = n). q.e.d.

Theorem 4.4 (Associativity of Addition).
(∀x, y, z ∈ N)(x + (y + z) = (x + y) + z). 定理

Proof. Let x, y ∈ N. We will prove this by induction.

Basis Step:
Notice x + (y + 0) = x + y = (x + y) + 0 by definition of addition.

Inductive Step:
Let k ∈ N and assume x + (y + k) = (x + y) + k. Observe.

x + (y + s(k)) = x + s(y + k) by definition of addition

= s(x + (y + k)) by definition of addition

= s((x + y) + k) by the inductive hypothesis

= (x + y) + s(k) by definition of addition

Thus, x + (y + s(k)) = (x + y) + s(k) as desired.

Therefore, we conclude (∀x, y, z ∈ N)(x + (y + z) = (x + y) + z).
q.e.d.

arithmetic 55

4.2 Abstraction and Extension

Given n, m ∈ N, we say n ⩽ m ⇔ (∃x ∈ N)(n + x = m), meaning n isx ⩽ y

less than or equal to m. We also define a strict version of this order by
saying n < m ⇔ (n ⩽ m) ∧ (n ̸= m). Knowing this, we realize thex < y

natural numbers have all the defining properties of an ordered semiring.

Theorem 4.5 (The Naturals are an Ordered Semiring).
N is a commutative monoid under addition with identity element 0.

1. (∃e ∈ N)(∀x ∈ N)(e + x = x + e = x). existence of additive identity

2. (∀x, y, z ∈ N)(x + (y + z) = (x + y) + z). associativity of addition

3. (∀x, y ∈ N)(x + y = y + x). commutativity of addition

N is a commutative monoid under multiplication with identity element 1.

4. (∃e ∈ N)(∀x ∈ N)(e · x = x · e = x). existence of multiplicative identity

5. (∀x, y, z ∈ N)(x · (y · z) = (x · y) · z). associativity of multiplication

6. (∀x, y ∈ N)(x · y = y · x). commutativity of multiplication

Multiplication distributes over addition, and the additive identity is also
the multiplicative annihilator. This makes N a commutative semiring.

7. (∀x, y, z ∈ N)(x · (y + z) = (x · y) + (x · z)). distributivity

8. (∀x ∈ N)(0 · x = 0). annihilation

Addition and multiplication are monotonic, making N an ordered semiring.

9. (∀x, y, z ∈ N)((x ⩽ y) ⇒ (x + z ⩽ y + z)). addition is monotonic

10. (∀x, y, z ∈ N)((x ⩽ y ∧ 0 ⩽ z) ⇒ (x · z ⩽ y · z)). multiplication is monotonic

We usually say that N is the canonical ordered semiring because any
other algebraic structure that has all of these same properties must
contain a copy of N within it as a substructure. 定理

The Integer Ring

The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} extend N by introducing ad-Z

ditive inverses1 for every element and inheriting all of the previous 1 If A with operation ⋆ is an algebraic
structure with identity element e⋆, then
we say b ∈ A is an inverse for a ∈ A with
respect to ⋆ if a ⋆ b = e⋆. Depending on
the context, we may denote the inverse
of a by −a or a−1 when it exists.

properties. An algebraic structure with all the properties of a monoid,
but which also has inverses for every element, is called a group. Sincegroup

addition is also commutative on Z, also say Z is a commutative group.

Theorem 4.6 (The Integers are a Group).
(∀z ∈ Z)(∃w ∈ Z)(z + w = 0). 定理

56 discrete mathematics

An algebraic structure with two operations that is a commutative group
under one and a monoid under the other and where the latter operation
distributes over the former is called a ring. If the operations are both
monotonic with respect to a linear order ⩽, then we call it an ordered
ring. The integers Z with standard + and · operations, ordered by ⩽
as usual, are the canonical example of an ordered ring. There is an
intimate relationship between N and Z that is revealed by the absolute
value function, denoted | · | : Z → N and defined below.

|z| :=

 z if z ⩾ 0

−z if z < 0

The absolute value of an integer z ∈ Z is then denoted |z|.|z|

The Rational Field

The set of rational numbers Q =
{

p/q
∣∣ p ∈ Z ∧ q ∈ N+

}
extends Z byQ

introducing multiplicative inverses for every nonzero element. Every
ring with this additional property is called a field. With the inherited
properties from the integers, Q is the canonical ordered field.

Theorem 4.7 (The Rationals are a Field).
(∀q ∈ Q)

(
q ̸= 0 ⇒ (∃r ∈ Q)(q · r = 1)

)
. 定理

The Continuum

The set of real numbers R completes Q by ensuring that every CauchyR

sequence of rational numbers has a limit that it converges to.

Figure 4.1: Augustin-Louis Cauchy

Zero-Product Property

All of these algebraic structures happen to be cancellative with respect to
both of their operations. This implies there are no nonzero zero divisors.

Theorem 4.8.
Let A be any of N, Z, Q, R with its standard addition and multiplication
operations. Then, the following three statements are true.

1. (∀x, y, z ∈ A)
((

x + z = y + z
)
⇒
(

x = y
))

. additive cancellation

2. (∀x, y, z ∈ A)
((

x · z = y · z ∧ z ̸= 0
)
⇒
(
x = y

))
. multiplicative cancellation

3. (∀x, y ∈ A)
((

x · y = 0
)
⇔
(

x = 0 ∨ y = 0
))

. domain property

定理

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

5

Ancient Number Theory
“Αὐτός μέν Πῡθᾰγόρας, ἐν τῷ ἱέρῳ λογῳ διαρρήδην
μορφών καί ἰδέων κράντορα τόν ἀριθμόν ἐλεγεν ἐιναι, καί

θέων καί δαιμόνων αἲτιον· καί τῷ πρέσβυτατῳ καί

κρατιστεύοντι τέχνιτῃ θέῳ κανονα, καί λογον τεχνικόν,

νουν τε καί σταθμάν ἀκλῐνέσταταν τόν ἀριθμόν ὑπεικε

συστάσιος καί γενέσεως τῶν πάντων.”
– ᾿Ιάμβλιχος

Figure 5.1: Pythagoras (Πυθαγόρης).

“Number is the ruler of forms and ideas and the cause of Gods
and dæmons.”

– Pythagoras

5.1 The Greeks

Definition 5.1 (Divisibility).
For any a, b ∈ Z, we say that a divides b when b is a multiple of a.divides

a | b :⇔ (∃k ∈ Z)(a · k = b)a | b

Note that this is a sentence establishing a relation on Z. 定義

Theorem 5.1 (Absolute Monotonicity of Divisibility).
Let a, b ∈ Z such that b ̸= 0. Then, a | b implies |a| ⩽ |b|. 定理

Lemma 5.1.
Let z ∈ Z. Then, 1 | z and z | 0. Further, we have (0 | z) ⇔ (z = 0).
Finally, (z | 1) ⇔ (z ∈ {−1, 1}). 引理

Definition 5.2 (Parity).
Let z ∈ Z. We say that z is even by definition if 2 | z. Analogously, we zeven

is odd if 2 | z − 1. This characteristic of z is called its parity. 定義odd

Theorem 5.2 (Even-Odd Dichotomy).
For every z ∈ Z, we know z is either even or odd but not both. 定理

https://en.wikipedia.org/wiki/Pythagoras

58 discrete mathematics

Theorem 5.3.
Let n, a, b, x, y ∈ Z such that n | x and n | y. Then, n | ax + by. 定理

Theorem 5.4 (Divisibility is a Partial Order).
The divisibility relation on N has the three following properties.

1. (∀a ∈ N)(a | a). reflexivity

2. (∀a, b ∈ N)((a | b ∧ b | a) ⇒ a = b). antisymmetry

3. (∀a, b, c ∈ N)((a | b ∧ b | c) ⇒ a | c). transitivity

This makes divisibility on N an example of a partial order. 定理

Definition 5.3 (Primality).
We say that a natural number p ∈ N is prime when p > 1 and p isprime

minimally divisible, meaning (∀n ∈ N)(n | p ⇒ n ∈ {1, p}). Any
natural number that is not prime is called composite by definition. 定義composite

Lemma 5.2 (Fundamental Lemma of Arithmetic).
Let n ∈ N such that n ⩾ 2. Then, (∃p ∈ N)(p is prime ∧ p | n). 引理

Theorem 5.5 (Fundamental Theorem of Arithmetic).
Let n ∈ N \ 2. Then, ∃!k ∈ N and ∃!(p0, α0), . . . (pk, αk) ∈ N × N such
that p0, . . . pk are distinct prime numbers and the following holds.

n =
k

∏
i=0

pαi
i = pα0

0 pα1
1 . . . pαk

k

定理

Theorem 5.6 (Euclid’s Theorem).
There are infinitely many prime numbers. 定理

Proof. We know there is at least one prime number since 2 is prime.
Towards a contradiction, suppose p0, . . . pk ∈ N is a complete list of all
the prime numbers, where k ∈ N. Consider the product P := ∏k

i=0 pi

of all of these prime numbers. Since pi ⩾ 2 for each i ∈ k + 1, we know
P ⩾ 2, meaning P has a prime divisor by lemma 5.2. Let pj be that
prime divisor, so that pj | P + 1, and observe the following.

pj

 k

∏
i=0,i ̸=j

pi

 =
k

∏
i=0

pi = P

This observation implies pj | P . Since pj divides both P and P + 1,
theorem 5.3 leads us to the following astonishing revelation.

pj | (P + 1)−P

This implies pj | 1, so pj ⩽ 1. However, pj > 1 since pj is prime. �

ancient number theory 59

Therefore, p0, . . . pk must not have been a complete list of the primes.
Applying this argument to any finite set of primes leads us to our
conclusion: there are not finitely many prime numbers. q.e.d.

Definition 5.4 (Greatest Divisors and Least Multiples).
The greatest common divisor of two integers a, b ∈ Z—denoted gcd(a, b)—gcd(a, b)

is a natural number d ∈ N that lives up to its name: d is a common
divisor of a and b, and d is greatest among all possible common divisors.

1. gcd(a, b) | a

2. gcd(a, b) | b

3. (∀z ∈ Z)
((

z | a ∧ z | b
)
⇒ z | gcd(a, b)

)
Note that we define the greatness of gcd(a, b) with respect to divisibility
as opposed to the traditional ⩽ linear ordering. This allows us to
observe gcd(0, 0) = 0 where it would otherwise not be well-defined.
We define the least common multiple of a, b ∈ Z dually as the commonlcm(a, b)

multiple that is least among all possible common multiples.

1. a | lcm(a, b)

2. b | lcm(a, b)

3. (∀z ∈ Z)
((

a | z ∧ b | z
)
⇒ lcm(a, b) | z

)
These definitions can naturally be extended to finite sets of more than
two integers at a time. 定義

Definition 5.5 (Coprimality).
We say x, y ∈ Z are coprime when gcd(x, y) = 1. Given Z ⊆ Z andcoprime

k ∈ N \ 2, we say the numbers in Z are k-wise relatively prime when
gcd(z0, z1, . . . zk−1) = 1 for each choice of distinct z0, z1, . . . zk−1 ∈ Z .

定義

Lemma 5.3.
For any a, b ∈ Z, the following two statements are true.

1. gcd(a, b) = 0 ⇔ (a = 0 ∧ b = 0)

2. gcd(a, b) ⩾ 1 ⇔ (a ̸= 0 ∨ b ̸= 0)

Further, gcd(x, x) = gcd(x, 0) = x and gcd(x, 1) = 1 for all x ∈ Z.
引理

Theorem 5.7.
Given arbitrary integers a, b ∈ Z, the following statement is true.

gcd(a, b) = 1 ⇔ (∀p ∈ N)
(

p is prime ⇒
(

p ∤ a ∨ p ∤ b
))

This means precisely that coprime numbers share no prime factors. 定理

60 discrete mathematics

Lemma 5.4 (Euclid’s Division Lemma).
If a, b ∈ Z and b ̸= 0, there exist unique q, r ∈ Z satisfying the following.

a = q · b + r and 0 ⩽ r < |b|
We call q and r above the quotient and remainder respectively. 引理

Algorithm 5.1 (Euclidean Division).
Given a, b ∈ Z, we compute their greatest common divisor as follows.

gcd(a, b) :=

a if b = 0

gcd(b, r) if b ̸= 0, where r ∈ Z is the integer satisfying

(∃q ∈ Z)(a = qb + r) ∧ 0 ⩽ r < |b|

演算法

def gcd(a, b):

return a if b == 0 else gcd(b, a % b)

Figure 5.2: A recursive Python implemen-
tation of the Euclidean division algorithm in
O(log(min(a, b))) time and O(1) space.

Theorem 5.8 (Bézout’s Identity).
(∀a, b ∈ Z)(∃x, y ∈ Z)

(
ax + by = gcd(a, b)

)
. 定理

Theorem 5.9 (Euclid’s Lemma).
For any a, b ∈ Z and any prime p ∈ N, if p | ab, then p | a or p | b. 定理

Proof. Let a, b ∈ Z and let p ∈ N be prime such that p | ab. If p | a,
then we are done; on the contrary, suppose p ∤ a. Since p is prime, we
can derive q ∤ p ∨ q ∤ a for any arbitrary prime q ∈ N as follows.

q | p ⇒ q ∈ {1, p} ⇒ q = p ⇒ q ∤ a

This tells us p and a share no prime factors, so gcd(p, a) = 1. Applying
Bézout’s identity, there exist x, y ∈ Z making the following equality hold.

1 = px + ay

Since p | ab, we know pk = ab for some k ∈ Z. Now, we can sit back.

1 = xp + ya ⇒ 1b = (px + ay)b

⇒ b = (px)b + (ay)b

⇒ b = p(xb) + (ab)y

⇒ b = p(xb) + (pk)y

⇒ b = p(xb) + p(ky)

⇒ b = p(xb + ky)

This demonstrates p | b because xb + ky ∈ Z. q.e.d.

Corollary 5.1.
For any a, b, c ∈ Z, if a | bc and gcd(a, b) = 1, then a | c. 推論

6

Combinatorics

“What we can’t say we can’t say, and we can’t whistle it either.”

– Frank P. Ramsey

The study of counting.

6.1 Judging the Size of a Set

Recall that a function f : X → Y from a domain X to a codomain Y The phrase f : X → Y can be read either
as the noun “ f from X to Y” or as the
full sentence “ f is a function from X to Y”
depending on context.

function

establishes a relation that associates every element x ∈ X of the domain
with exactly one element f (x) ∈ Y of the codomain.

(∀x ∈ X)(∃!y ∈ Y)
(

f (x) = y
)

Commonly, the output f (x) ∈ Y of a given input x ∈ X is called the When f (x) = y, we refer to x as the preim-
age of y, and we call y the image of x.image of x under f . Analogously, the input x ∈ X that generates a givenimage

output y := f (x) ∈ Y is referred to as the preimage of y under f .preimage

Definition 6.1.
Let X and Y be sets and consider a function f : X → Y. We say that f is
injective if f always maps distinct inputs to distinct outputs.2 Formally, 2 Injections are also known as “one-to-one.”injection

this means f satisfies the following statement.

(∀a, b ∈ X)
(

f (a) = f (b) ⇒ a = b
)

An equivalent, but often more useful, way to express this is given below.

(∀a, b ∈ X)
(
a ̸= b ⇒ f (a) ̸= f (b)

)
Once we know that f is an injection, we can denote this characteristic
of f by writing f : X ↪→ Y, reading this as “ f is an injection from X to Y”
or “ f injects X into Y” to taste. Notice the use of the word “into.”

We say that f is surjective when every codomain element has a preimage.3 3 Surjections are sometimes called “onto.”surjection

This means that f “covers” its entire codomain—that the range of f is
identical to its codomain. Formally, we say this as follows.

(∀y ∈ Y)(∃x ∈ X)(f (x) = y)

62 discrete mathematics

Knowing that f is surjective grants access to the convenient denotational
syntax f : X ↠ Y, which can be read as “ f is a surjection from X to Y”
or “ f surjects X onto Y.” Notice the use of the word “onto.”

When f is both injective and surjective at the same time, we say that the
function is bijective and use the combined f : X ↪↠ Y syntax.1 定義 1 There are “people” who refer to bijections

as “one-to-one correspondences.” They have
been abandoned by God and will never
feel the warm light of heaven.

bijection

It’s often a good idea to have a visual in mind to ground your intuition.
In the same way that we can think of functions as “curves that pass the
vertical line test,” we can think of injective functions as “curves that pass
the horizontal line test.”

We judge the relative sizes of sets by the kinds of functions that exist
between them, and use the notions of injectivity and surjectivity to give
formal meaning to “the size of a set.”

Definition 6.2 (Equinumerosity).
We define A to be no smaller than B when A can be injected into B.

|A| ⩽ |B| :⇔ ∃ f (f : A ↪→ B)|A| ⩽ |B|

We define A to be no larger than B when A can be surjected onto B.

|A| ⩾ |B| :⇔ ∃g(g : A ↠ B)|A| ⩾ |B|

We say that two sets A and B have the same cardinality—meaning same
size or same number of elements—there is a bijection between A and B.

|A| = |B| :⇔ ∃h(h : A ↪↠ B)|A| = |B|

Definitions for |A| < |B| and |A| > |B| spring naturally from these.
定義

Lemma 6.1 (Reflexivity of Cardinality).
∀A(|A| = |A|). 引理

Proof. Let A be a set and consider the function f : A → A given by
f (a) := a for every a ∈ A. We will show f is a bijection.

To show f is injective, suppose a1, a2 ∈ A and assume f (a1) = f (a2).
Then, since f (a1) = a1 and f (a2) = a2, we know a1 = a2 by definition.
This proves (∀x, y ∈ A)(f (x) = f (y) ⇒ x = y), meaning f is injective.

To show that f is surjective, let a ∈ A and observe f (a) = a. This proves
(∀y ∈ A)(∃x ∈ A)(f (x) = y), meaning f is surjective.

Therefore, since f is both injective and surjective, we know that f is a
bijection from A to A, and thus |A| = |A| by definition. q.e.d.

combinatorics 63

The above lemma involves an important construction that shows up
frequently in many contexts.1 The identity function on a set X is the 1 We will soon see this is an echo of a re-

curring pattern we already encountered.function idX : X → X that maps every element of X back to itself;idX

formally, idX(x) := x for every x ∈ X. This function always exists for
any X, and this function is always a bijection on X. This is actually
a special case of X ⊆ Y, in which case we can make a very similar
construction known as the canonical embedding of X in Y, which is the
unique injection that identifies in Y those elements that are also in the
subset X. Every injection X ↪→ Y between any two arbitrary sets is a
“structure-preserving map,” also known as an embedding, that identifies
a substructure of Y that “looks like X.” When X ⊆ Y, the canonical
embedding picks out an identical copy of X within Y.

Lemma 6.2.
∀A∀B(A ⊆ B ⇒ |A| ⩽ |B|). 引理

Proof. Consider sets A and B such that A ⊆ B, and let f : A → B be the
function given by f (a) := a for a ∈ A.2 We will show f is injective. Let 2 The fact that A ⊆ B guarantees that

{ f (a) | a ∈ A} ⊆ B, ensuring exis-
tence of the output of f for every input.
Uniqueness of these outputs is given by
the axiom of extensionality.

a1, a2 ∈ A such that f (a1) = f (a2). We then have a1 = a2 by definition
of f . Therefore, f is injective, so |A| ⩽ |B| by definition. q.e.d.

These definitions expose to us a formal way of counting the elements of
a set. Suppose we have a set A := {a, b, c, d}. To count the elements of
A, we might point at a first, then b second, then c third, and finally d.
This implicitly defines the function f : {0, 1, 2, 3} → {a, b, c, d} below.

0
f7−−−−−−−→ a

1
f7−−−−−−−→ b

2
f7−−−−−−−→ c

3
f7−−−−−−−→ d

We can interpret this mapping as saying that the element a that f
assigns as the output of 0 is the first element of A, with the element b
being the second because it is the output of 1 under f , and so on. If this
“counting function” f is a bijection, then what we’ve done is establish a
perfect association between A and the natural number 4 = {0, 1, 2, 3}.3 3 Recall n := {0, 1, . . . , n − 1} for n ∈ N.

Any other set in bijection with A will also be in bijection with 4, so
we can think of 4 as the canonical representative of “sets with 4 elements.”
We refer to these canonical representatives as cardinal numbers, and wecardinal

use the notation |X| to refer to the cardinality of X—the cardinal number|X|
that represents the “size of X.”

If a set is what we call “finite,” then we should be able to count its
elements using a natural number n = {0, 1, . . . , n − 1}, and in that case
the natural choice of cardinal for X is simply |X| = n.

64 discrete mathematics

Definition 6.3 (Finite).
We say a set F is finite if there exists n ∈ N such that |F| = |n|. In this
situation, the natural number n is unique, so we define |F| := n. 定義

Lemma 6.3.
For any n ∈ N, we have |{1, 2, . . . n}| = n. 引理

Proof. Let n ∈ N. We will show |{1, 2, . . . n}| = |{0, 1, . . . n − 1}|.
Consider the function f : {1, 2, . . . n} → {0, 1, . . . n − 1} given by
f (x) := x − 1 for each x ∈ {1, 2, . . . n}.

To see that f is an injection, consider a, b ∈ {1, 2, . . . n} and suppose
f (a) = f (b). We then know a − 1 = b − 1 by the definition of f .
Cancelling on both sides then yields a = b as desired.

To see that f is surjective, let y ∈ {0, 1, . . . n − 1}. Notice 0 ⩽ y ⩽ n − 1,
so that 1 ⩽ y + 1 ⩽ n, implying y + 1 ∈ {1, 2, . . . n}.1 We can now 1 This verifies y + 1 is in the domain of f .

simply observe that f (y + 1) = (y + 1)− 1 = y. q.e.d.

It should hopefully be intuitively straightforward to say that “every
set has a size,” and that therefore the cardinalities of sets are always
comparable: for any two sets A and B, we should know that either
|A| ⩽ |B| or that |B| ⩽ |A|. As it turns out, this is not a theorem that we
can prove using the massive mathematical system we’ve established. If
we want to know this fact, we need one final axiom.2 2 While this is the final axiom we will be

introducing for our purposes, there is ac-
tually one more axiom in standard ZFC:
the axiom schema of replacement, which
tersely says “the image of a set under a de-
finable class function is a set” We won’t be
using this axiom for anything, so it won’t
be mentioned or discussed in the text.

Axiom 7 (Equivalent to the Axiom of Choice).
Every set has a unique cardinality. 公理

Theorem 6.1 (Dichotomy of Cardinality).
For any sets A and B, either |A| ⩽ |B| or |B| ⩽ |A|. 定理

6.2 Compositionality and Invertibility

Definition 6.4 (Composition).
Let X, Y, and Z be sets. Given compatible functions f : X → Y and
g : Y → Z, the composition of g with f is a function g ◦ f : X → Zg ◦ f

defined by (g ◦ f)(x) := g
(

f (x)
)

for all x ∈ X. We read the name of
this function as “g composed with f ” or “g after f .” 定義

Theorem 6.2 ((·)-jections are (·)-morphisms).
Let X and Y be sets and consider a function f : X → Y. If we know f
is an injection, then f must have a surjective left inverse and vice versa. |X| ⩽ |Y| ⇔ |Y| ⩾ |X|

f is injective ⇔ (∃g : Y ↠ X)(g ◦ f = idX)

Conversely, f is a surjection exactly when f has an injective right inverse. |X| ⩾ |Y| ⇔ |Y| ⩽ |X|

combinatorics 65

f is surjective ⇔ (∃g : Y ↪→ X)(f ◦ g = idY)

When f is a bijection, there is a unique, bijective, two-sided inverse for f . |X| = |Y| ⇔ |Y| = |X|

f is bijective ⇔ (∃!g : Y ↪↠ X)(g ◦ f = idX ∧ f ◦ g = idY)

In this last case, when f is bijective, we refer to the unique two-sided
inverse of f as the inverse of f and use f−1 to denote this function. 定理f−1

Theorem 6.3 (Cantor-Schröder-Bernstein).
Suppose X and Y are sets. If there exist injections f : X ↪→ Y and
g : Y ↪→ X in opposite directions between the two sets, then a bijection
h : X ↪↠ Y exists from one set to the other. We restate this as follows.

∀A∀B
((

|A| ⩽ |B| ∧ |B| ⩽ |A|
)
⇒ |A| = |B|

)
Notice that this establishes the antisymmetry of cardinality. 定理

6.3 Counting with Our Fingers

Theorem 6.4.
If A and B are finite sets, then |A × B| = |A| · |B|. 定理 This is one of the reasons why A × B is

called the Cartesian product of A with B.

Theorem 6.5 (Inclusion/Exclusion Principle).
If A and B are finite, then |A ∪ B| = |A|+ |B| − |A ∩ B|. In general,
given n finite sets A1, A2, . . . An with n ∈ N+, the following is true.∣∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣∣ =
n

∑
k=1

(−1)k+1 ∑
1⩽i1<···<ik⩽n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | ⩽
n

∑
i=1

|Ai|

As a consequence, the union of finitely many finite sets is finite. 定理

Corollary 6.1.
If A and B are finite and B ⊆ A, then |A \ B| = |A| − |B|. 推論

Definition 6.5.
The floor function is the map ⌊ · ⌋ : R → Z given below for any x ∈ R.

⌊x⌋ := max{z ∈ Z | z ⩽ x}

This defines ⌊x⌋ to be the greatest integer less than or equal to x.1 In other 1 As with any definition we make, but
especially with definitions such as these
where we define an object based on a prop-
erty we want it to have, we should always
ask the question: does such an object ac-
tually exist? As with the gcd(a, b) and
lcm(a, b) for a, b ∈ Z, the answer here is
that yes, ⌊x⌋ always exists for any x ∈ R.

⌊x⌋
words, ⌊x⌋ is the result of rounding x down to the nearest integer. The
ceiling function ⌈ · ⌉ : R → Z, given below, is dual to the floor function.

⌈x⌉ := min{z ∈ Z | z ⩾ x}

This defines ⌈x⌉ as the least integer greater than or equal to x, which⌈x⌉
corresponds analogously to rounding x up to the nearest integer. 定義

66 discrete mathematics

Theorem 6.6 (Pigeonhole Principle).
Consider any two sets A and B. The following two statements are true.

|A| > |B| ⇒ (∀ f : A → B)(f is not injective)

|A| < |B| ⇒ (∀ f : A → B)(f is not surjective)

Further, if there exist n, k ∈ N+ such that |A| = n and |B| = k, then for
any f : A → B there exists b ∈ B for which the inequality below holds.∣∣∣{a ∈ A

∣∣ f (a) = b
}∣∣∣ ⩾ ⌊n − 1

k

⌋
+ 1 =

⌈
n
k

⌉
定理

6.4 Structure and Substructure

Definition 6.6 (Combination).
Given a finite set A of cardinality n := |A|, we know that the set of all
possible subsets of A is given by P(A) = {z | z ⊆ A}. We now know
that each of those subsets B ⊆ A must have cardinality B ∈ {0, . . . n}.
Letting k := |B|, we say that B in this case is a k-combination of A.k-combination

For any natural numbers n, k ∈ N, we define the combinatorial number
n choose k to be the number of cardinality k subsets of n as below.n choose k (

n
k

)
:=
∣∣∣{z

∣∣ z ⊆ {0, 1, . . . , n − 1} ∧ |z| = k
}∣∣∣

We denote n choose k with the notation (n
k). Since the identities of the(n

k)

elements of a set don’t influence its size, it should be clear to see that
(n

k) measures the number of k-combinations of any set of cardinality n.

∀X(∀n, k ∈ N)

(
|X| = n ⇒

∣∣∣{z
∣∣ z ⊆ X ∧ |z| = k

}∣∣∣ = (n
k

))

定義

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

Figure 6.1: Ten rows of Pascal’s triangle.

Theorem 6.7.
Let n, k ∈ N. The numbers (n

k) satisfy the following recurrence relation.(
n
0

)
=

(
n
n

)
= 1

(
n + 1
k + 1

)
=

(
n

k + 1

)
+

(
n
k

)
In the edge cases, we know k > n ⇔ (n

k) = 0. 定理

Theorem 6.8.
Let n, k ∈ N such that k ⩽ n. Then, (n

k) = (n
n−k). 定理

https://en.wikipedia.org/wiki/Pascal%27s_triangle

combinatorics 67

Theorem 6.9 (Binomial Theorem).
Let x, y ∈ R and n ∈ N. The following equality then holds.

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k

定理

Figure 6.2: The binomial line (x + y)1 can
be written 1x + 1y.

Figure 6.3: The binomial square (x + y)2

can be written 1x2 + 2xy + 1y2.

Figure 6.4: The binomial cube (x + y)3

can be written 1x3 + 3x2y + 3xy2 + 1y3.

To understand this intuitively, consider expanding the product below.

(x + y)2 = x2 + xy + yx + y2

When we fully distribute (x + y)2 = (x + y)(x + y), each term in the
resulting sum will have exactly two factors1 because each copy of (x+ y)

1 This can easily be proven by induction.

contributes either an x or a y to that term. We obtain the xx = x2 in the
final sum when both (x + y) factors contribute one x to the term. Since

x y x y

xx xy yx yy

(x + y)(x + y)

xx xy yx yy
there is only one way to select an x from each factor, there is only one
copy of x2 in the final result. Analogous reasoning applies to y2. The xy
term in the sum is produced by taking an x from the first (x + y) and
a y from the second; however, because multiplication is commutative,
this is equal to the yx term we would get from taking a y from the first
(x + y) and an x from the second. Notice, in this scenario, that we are
selecting a total of one x and one y from among all the (x + y), and that
there are two ways to make such a selection, resulting in a 2xy term in
the final sum. We can generalize this argument as follows.

(x + y)n = xn + xn−1y + xn−2yx + · · ·+ yxyn−2 + xyn−1 + yn

When distributing the n copies of (x + y) above, each term in the
resulting sum will have k copies of x and n − k copies of y, with each
value of k ∈ {0, . . . , n} accounting for one of these terms.2 When we 2 Remember that each term of the result-

ing sum must have a total of n factors.pick k of the (x+ y) to select an x from, we are immediately determining
that the remaining n− k must be copies of y. Every time that we do this,
we are selecting k of the (x + y) to contribute their x, and this collection
of k-many (x + y) taken out of the total n-many (x + y) corresponds
precisely (bijectively!) to a k-combination taken from a size n set. This
should make it clear then that the number of copies of xkyn−k in the
final result—after commuting—will be exactly (n

k). Summing over the
range of values for k yields the result (x + y)n = ∑n

k=0 (
n
k)xkyn−k.

68 discrete mathematics

Corollary 6.2.
If X is a finite set, then |P(X)| = 2|X|. 推論

6.5 Arrangement and Derangement

Definition 6.7 (String).
Given a natural number n ∈ N and a set A, a finite string over A
is simply a function f : n → A. The length of the string f is given
by | f | = |n| = n.1 We refer to f (i) as the ith character of the string, 1 Remember that a function is formally

just a set of ordered pairs, so the string
f : 3 → {a, b, c} given by f = "bac" is
actually the set f = {(0, b), (1, a), (2, c)}.
In fact, whenever φ : X → Y is a function,
we know |φ| = |X|.

and we thus sometimes call A an alphabet appropriately. If k ∈ n
and ℓ ⩽ n, then we call the function f[k : k + ℓ] : ℓ → A that mapsf[k : k + ℓ]

f[k : k + ℓ](x) := f (x − k) for each x ∈ N a substring of f of length ℓ.2

2 The notation f[k : k + ℓ] is often called
slice indexing when applied to lists or ar-
rays in a programming language. In that
context, the substring f[k : k + ℓ] would
be called a slice of f starting from index
k and ending at index k + ℓ− 1.

We will adopt the convention f[: ℓ] := f[0 : ℓ] and f[k :] := f[k : n].

The concatenation of two finite strings f : k1 → A and g : k2 → B is
another string, denoted f g : (k1 + k2) → A∪B and defined below.f g

(f g)(x) :=

 f (x) if 0 ⩽ x < k1

g(x − k1) if k1 ⩽ x < k1 + k2

定義

When f is a finite string of length n, we will sometimes take the
convenience of notating the string by writing " f (0) f (1) . . . f (n − 1)".
For example, let s : 12 → {d, e, h, l, o, r, w, !, } be the following string.

0 7−−−→ h 6 7−−−→ w

1 7−−−→ e 7 7−−−→ o

2 7−−−→ l 8 7−−−→ r

3 7−−−→ l 9 7−−−→ l

4 7−−−→ o 10 7−−−→ d

5 7−−−→ 11 7−−−→ !

By writing s = "hello world!", we say that |s| = 12 and that the first
character of s is s(0) = h, the second character is s(1) = e, and so
on. By writing s[6 : 11], we refer to the substring "world" of length
|"world"| = 5. The concatenation s[: 5] s[5 : 6] s[6 : 11] s[11 :]
is then "hello" " " "world" "!" and is another way to rewrite s.

Theorem 6.10.
Given two finite sets X and Y, there exist |Y||X| distinct functions from Inspired by this theorem, some authors

write the set { f | f : A → B} as BA,
so |BA| = |B||A|. Accordingly, the set of
functions from A to B is sometimes called
an exponential object in the category of sets.

X to Y. Formally,
∣∣{ f | f : X → Y}

∣∣ = |Y||X| for any finite X and Y.
As a consequence, we know that there are nk distinct strings of length
k ∈ N over any finite alphabet A of cardinality n ∈ N. Formally stated,∣∣{"a0a1...ak-1" | (∀i ∈ k)(ai ∈ A)}

∣∣ = nk when |A| = n ∈ N. 定理

combinatorics 69

Definition 6.8 (Factorial).
The factorial (·)! : N → N is the recursively defined function below.

0! := 1

(n + 1)! := (n + 1) · n!

When n > 0, we can write n! =
(
∏n

i=1 i
)
= n · (n − 1) · · · 3 · 2 · 1. 定義n!

Theorem 6.11.
There exist |Y|!/(|Y| − |X|

)
! distinct injective functions between any two

finite sets X and Y that satisfy |X| ⩽ |Y|.1 We write this formally below. 1 In the case that X ⊆ Y, we let k := |X|
and refer to any injection f : X ↪→ Y as a
k-permutation of Y.∣∣∣{ f

∣∣ f : X ↪→ Y
}∣∣∣ =

|Y|!

(|Y|−|X|)!
if |X| ⩽ |Y| ∈ N

0 otherwise

As a consequence, if A is a finite alphabet of cardinality n ∈ N and
k ⩽ n, then there are n!/(n − k)! strings of length k over A whose characters
are all distinct. This is written formally below assuming k ⩽ n = |A|.∣∣∣∣∣
{
"a0a1...ak-1"

∣∣∣∣ (∀i, j∈ k)
(
ai∈A ∧

(
i ̸= j ⇔ ai ̸=aj

))}∣∣∣∣∣ = n!
(n − k)!

定理

Theorem 6.12.
Let X and Y be finite sets and k1, k2 ∈ N and suppose we have two sets
of strings FX ⊆ { f | f : k1 → X} and GY ⊆ {g | g : k2 → Y} of lengths
k1 and k2 over X and Y respectively. Then, the following equality holds.∣∣∣∣{ f g

∣∣∣ (f ∈ FX
)
∧
(

g ∈ GY
)}∣∣∣∣ = |FX | · |GY|

定理

Definition 6.9 (Permutation).
Given a set X, we call a bijection f : X ↪↠ X a permutation on X. 定義permutation

Theorem 6.13.
Given a finite set X, there are |X|! distinct permutations on X. Conse-
quently, if |X| = n ∈ N, then there are n! strings of length n over X
where all the characters are distinct. 定理

6.6 Equivalence and Partitioning

Given a nonempty set X ̸= ∅, a partition is a way of splitting up X into
a collection of non-empty subsets such that every element of X appears
in exactly one of those subsets. Formally, for any P ⊆ P(X), we say P is
a partition of X if P satisfies each of the following three criteria.partition

70 discrete mathematics

1. (∀A ∈ P)(A ̸= ∅).

2. (∀A, B ∈ P)(A ̸= B ⇒ A ∩ B = ∅).

3. ∪P = X.

Partitions of sets have several nice combinatorial properties. For in-
stance, whenever we have a partition P of a finite set X, we know that
∑p∈P|p| = |X|. This follows from the inclusion/exclusion theorem using
the facts that ∪P = X and that the sets in that union are all pairwise
disjoint from each other (so the higher-order terms will be zero).

Every partition on a set defines a different notion of equivalence for the
elements of that set. To see what we mean by this, we introduce a new
definition. A relation R ⊆ X × X on a set X is called an equivalence
relation if R is reflexive, symmetric, and transitive. These three qualities
are defined formally below.

1. (∀a ∈ X)
(
(x, x) ∈ R

)
. reflexivity

2. (∀a, b ∈ X)
(
(a, b) ∈ R ⇒ (b, a) ∈ R

)
. symmetry

3. (∀a, b, c ∈ X)
(
((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R

)
. transitivity

Given an element a ∈ X, the equivalence class of a under the equivalence
relation R is given by [a]R := {b ∈ X | (a, b) ∈ R}, which is the set of[a]R

all elements b ∈ X that a is equivalent to according to R. As it turns out,
the set of all equivalence classes according to R is a partition on X. We
denote this set of all equivalence classes by X/R := {[x]R | x ∈ X}.1 1 This is typically read “X mod R.”X/R

Lemma 6.4.
If R is an equivalence relation on X, then X/R is a partition on X. 引理

Proof. Let X be a set and let R be an equivalence relation on X. We
will show that X/R = {[x]R | x ∈ X} is a partition on X.

First, take an arbitrary equivalence class [x]R ∈ X/R, where x ∈ X. We
know (x, x) ∈ R since R is reflexive, so x ∈ [x]R. This shows [x]R ̸= ∅.

Next, consider [x]R, [y]R ∈ X/R with x, y ∈ X and assume [x]R ̸= [y]R.
Towards a contradiction, assume [x]R ∩ [y]R ̸= ∅. Then, there exists i
such that i ∈ [x]R and i ∈ [y]R. Let z ∈ X and observe the following.

z ∈ [x]R ⇔ (x, z) ∈ R by definition

⇔ (z, x) ∈ R by symmetry of R

⇔ (z, x) ∈ R ∧ (x, i) ∈ R because i ∈ [x]R
⇔ (z, i) ∈ R by transitivity of R

⇔ (z, i) ∧ (i, y) ∈ R because i ∈ [y]R
⇔ (z, y) ∈ R by transitivity of R

⇔ z ∈ [y]R by definition

Then, [x]R = [y]R by the axiom of extensionality. � Thus, [x]R ∩ [y]R = ∅.

combinatorics 71

Finally, let x ∈ X. We know (x, x) ∈ R because R is reflexive, so x ∈ [x]R.
Since [x]R ∈ X/R, we have that x ∈ ∪(X/R). This shows X ⊆ ∪(X/R).
Conversely, let y ∈ ∪(X/R). Then, y ∈ [z]R for some z ∈ X, which
means (y, z) ∈ R. Since R ⊆ X × X, we then know y ∈ X. Therefore,
∪(X/R) = X by the axiom of extensionality.

These three observations let us conclude that X/R partitions X. q.e.d.

Lemma 6.5.
If P partitions X, then P = X/R for some equivalence relation R. 引理

Proof. Let X be a set and suppose P is a partition on X. Consider the
relation R := {(a, b) ∈ X × X | (∃Z ∈ P)(a ∈ Z ∧ b ∈ Z)}. First, we
will show that R is an equivalence relation on X.

Reflexivity:
Let x ∈ X. Since ∪P = X, we know there exists Z ∈ P such that x ∈ Z,
implying x ∈ Z ∧ x ∈ Z, so (x, x) ∈ R by the definition of R.

Symmetry:
Let x, y ∈ X and assume (x, y) ∈ R. Then, x ∈ Z ∧ y ∈ Z for some Z ∈ P.
This implies y ∈ Z ∧ x ∈ Z, so (y, x) ∈ R by definition.

Transitivity:
Let x, y, z ∈ X and assume (x, y) ∈ R and (y, z) ∈ R. Then, by the
definition of R, there exist A, B ∈ P such that x ∈ A ∧ y ∈ A and
y ∈ B ∧ z ∈ B. Since y ∈ A and y ∈ B, we then know y ∈ A ∩ B, so
A ∩ B ̸= ∅. Therefore, A = B.1 As a result, z ∈ A, letting us arrive at 1 A ∩ B ̸= ∅ ⇒ A = B is the contraposi-

tive of A ̸= B ⇒ A ∩ B = ∅.x ∈ A ∧ z ∈ A, from which we conclude (x, z) ∈ R.

Now that we know R is an equivalence relation on X, we will show
that X/R = P. Let A ∈ X/R and recall that A = [x]R for some x ∈ X.
Since ∪P = X, we know there is some Z ∈ P such that x ∈ Z.

∀y(y ∈ Z ⇔ (x, y) ∈ R ⇔ y ∈ A)

Therefore, A ∈ P because A = Z. This shows X/R ⊆ P. Conversely, let
B ∈ P. B ̸= ∅ because P is a partition, so there exists some a ∈ B.

∀b(b ∈ B ⇔ (a, b) ∈ R ⇔ b ∈ [a]R)

Hence, B ∈ X/R because B = [a]R; so, P ⊆ X/R. Thus, P = X/R.
q.e.d.

Theorem 6.14.
For any natural numbers n, k ∈ N with k ⩽ n, the following are equal.(

n
k

)
=

n!
k!(n − k)!

定理

72 discrete mathematics

6.7 Simple Graphs

Graphs abstract and generalize the idea of a relation on a set. A graph G
is determined by a set of vertices VG that are connected together by a setVG

of edges EG in some arrangement.1 A graph is called simple when every 1 Vertices are also commonly called nodes.EG

edge is a 2-combination of nodes, meaning that the edges are undirected and
must connect two distinct vertices.2 Formally, EG ⊆ {e ⊆ VV | |e| = 2}. 2 No multiedges nor self-loops.

We say a graph is finite when VG and EG are both finite.

Given a vertex v ∈ VG, we define the neighborhood of v in G to be the set
of all vertices that connect to v through an edge in the graph and denote
this by NG(v) := {u ∈ VG | {u, v} ∈ EG}. We also define the set ofNG(v)

incident edges on v as the set of all edges that v participates in. Formally,
IG(v) := {e ∈ EG | v ∈ e}. For simple graphs, |NG(v)| = |IG(v)|.3IG(v) 3 This can be proven by noticing that each

neighbor of v is connected to v by exactly
one edge, and each edge incident on v
connects v to exactly one of its neighbors.
One then simply constructs this bijection.

Every finite graph G comes equipped with a function degG(v) : VG → N

that assigns a degree to each node, given by degG(v) := |IG(v)|.

Lemma 6.6.
If G is a finite graph, then 0 ⩽ deg(v) < |V(G)| for every v ∈ V(G).

引理

Lemma 6.7 (Handshake Lemma).
Suppose G is a (finite, simple) graph on n ⩾ 2 nodes. Then, G contains
two distinct vertices v and w such that deg(v) = deg(w). 引理

7

Asymptotic Analysis

Definition 7.1 (Landau Notation).
Given two arbitrary functions f : N → R and g : N → R, we declare
that f is asymptotically dominated by g if the following sentence is true.

(∃n ∈ N)(∃k ∈ N)(∀x ∈ N)
(

n ⩽ x ⇒
∣∣ f (x)

∣∣ ⩽ k
∣∣g(x)

∣∣)
The set of all functions that g asymptotically dominates is denoted by
O(g) := {h : N → R | (∃n, k ∈ N)(∀x ∈ N)(n ⩽ x ⇒|h(x)| ⩽ k|g(x)|)}.O(f)

With these definitions, we write f ∈ O(g)—said “ f is big-oh of g” out
loud—to mean that f grows no faster than g in the size of the input. 定義

8

Infinity

“No one shall expel us from the paradise Cantor has created.”

– David Hilbert

Figure 8.1: Georg F. L. P. Cantor

8.1 Silence

Theorem 8.1.
|N| = |N+|. 定理

Proof. Consider the function f : N → N+ given by f (n) := n + 1 for
each n ∈ N. We will now show that f is a bijection.

Injectivity:
Let n, m ∈ N and assume f (n) = f (m). Then, n + 1 = m + 1, so n = m.

Surjectivity:
Let y ∈ N+ and notice that y ̸= 0. By definition, we then know y = s(x)
for some x ∈ N. We can then observe f (x) = x + 1 = s(x) = y.

Therefore, since f is a bijection, we can conclude |N| = |N+|. q.e.d.

Theorem 8.2.
|N| =

∣∣∣{n ∈ N
∣∣ (2 | n)

}∣∣∣. 定理

Proof. For convenience, define Ne :=
{

n ∈ N
∣∣ (2 | n)

}
and consider

the function f : N → Ne given by f (n) = 2n for each n ∈ N. We will
now show that f is both injective and surjective.

Injectivity:
For any n, m ∈ N,

(
f (n) = f (m)

)
⇒ (2n = 2m) ⇒ (n = m) since 2 ̸= 0.

Surjectivity:
Let y ∈ Ne, so that 2 | y. Then, we know there exists k ∈ Z such that
2k = y. We know k ⩾ 0 because, if k < 0, then 2k < 0, implying y < 0 and
contradicting the fact that y ⩾ 0. Thus k ∈ N and we have f (k) = 2k = y.

Therefore, since f is a bijection, we can conclude |N| = |Ne|. q.e.d.

https://en.wikipedia.org/wiki/Georg_Cantor

infinity 75

Theorem 8.3.
|N| = |Z|. 定理

Proof. Consider the function f : N → Z given by f (n) := n for each
n ∈ N. To see that f is injective, take arbitrary a, b ∈ N and observe that
f (a) = f (b) ⇒ a = b because f (a) = a and f (b) = b by definition.

Consider the function g : Z → N given, for each z ∈ Z, by the following.

g(z) :=

2z if z ⩾ 0

2|z| − 1 if z < 0

In order to show that g is injective, let x, y ∈ Z and assume g(x) = g(y).
We now have two cases.

Case 1:
Suppose g(x) is even. Then g(y) is also even because g(x) = g(y).
Towards a contradiction, assume x < 0; this would imply g(x) = 2|x| − 1,
telling us that g(x) is odd. � Therefore, x ⩾ 0; by the same reasoning,
y ⩾ 0. This yields g(x) = 2x = 2y = g(y), implying x = y because 2 ̸= 0.

Case 2:
Suppose g(x) is odd.1 Again, we see g(y) is odd because g(x) = g(y). 1 Recall that even and odd are mutually

exclusive and exhaustive over Z.Towards a contradiction, assume x ⩾ 0; this implies g(x) = 2x, showing
us that g(x) is even. � Therefore, as before, we obtain x < 0; the same
reasoning leads us to realize y < 0. So, g(x) = 2|x| − 1 = 2|y| − 1 = g(y).(

2|x| − 1 = 2|y| − 1
)
⇔
(
2|x| = 2|y|

)
⇔
(
|x| = |y|

)
Now, |x| = −x and |y| = −y because x < 0 and y < 0, so we have
−x = −y. We can now simply conclude x = y.

We now have two injections f : N ↪→ Z and g : Z ↪→ N. By the grace of
the Cantor-Schröder-Bernstein theorem, we are gifted the existence of a
bijection h : N ↪↠ Z, letting us conclude |N| = |Z|. q.e.d.

Theorem 8.4.
|N| = |N × N|. 定理

Proof. Consider the function f : N → N×N given by f (n) := (n, n) for
each n ∈ N. Let x, y ∈ N and observe the following chain of reasoning.(

f (x) = f (y)
)

⇒
(
(x, x) = (y, y)

)
⇒
(

x = y ∧ x = y
)
⇒
(
x = y

)
This shows us that f is an injection by definition.

Now, consider the function g : N × N → N given by g((n, m)) := 2n3m.
In order to show that g is injective, take (a, b), (x, y) ∈ N × N such that
g((a, b)) = g((x, y)) and assume (a, b) ̸= (x, y) towards a contradiction.

Case 1:
Suppose a ̸= x. Without loss of generality,2 let a < x. This implies

2 Because a ̸= x and a, x ∈ N, we know
that either a < x or a > x. Technically,
we do need to prove that a contradiction
occurs in both cases; however, the proof
we would write in the case that a > x
would be identical to the proof we written
here for a < x if we simply swapped
the names of a and x. This fact—that a
relabelling of the names of some variables and
identities of some constants is enough to turn
one proof into the other—means that we can
save time and space by proving just one of
these statements without losing generality
in the strength of our argument. In these
instances—when there is symmetry in our
proofs that can be exploited—we now
have the and experience to invoke the
incantation “without loss of generality” to
declare our intentions. Be sure to wield
this spell with great fear and trepidation.

x − a > 0, so that x − a − 1 ⩾ 0. We know 2a3b = 2x3y, so 3b = 2x−a3y,
so that 3b = 2(2x−a−13y). This means 2 | 3b because 2x−a−13y ∈ Z. �

76 discrete mathematics

Case 2:
A contradiction follows mutatis mutandis.1 � Details are left to the reader. 1 Mutatis mutandis is another incantation

that, when used with flawless judgement
and shrewd discernment, can save the sea-
soned mathemagician massive amounts
of time. It means “with those things
changed that should be changed,” or “once
what must be modified has been modified.”

Because we encountered contradictions in each case, we can therefore
conclude that (a, b) = (x, y), showing that g is injective. Since we have
injections f : N ↪→ N × N and g : N × N ↪→ N, we bask in the warm
light of the Cantor-Schröder-Bernstein theorem and enjoy the existence of
a bijection h : N ↪↠ N × N. Therefore, |N| = |N × N|. q.e.d.

Corollary 8.1.
|N| = |Q|. 推論

8.2 The Sound of Seven Trumpets

The Bottomless Abyss

Definition 8.1 (Countable).
We call X countable if |X| ⩽ |N|, meaning X can be injected into N. 定義countable

Lemma 8.1.
Every subset of N is countable. 引理

Definition 8.2 (Infinite).
Let X be a set and recall that we define X to be finite precisely when
(∃n ∈ N)(|X| = n), which is to say that X can be put in bijection with the
natural number {0, 1, . . . n − 1}. We will say that X is infinite preciselyinfinite

when no finite set can be bijected with X, meaning (∀n ∈ N)(|X| ̸= n).
When a set is both countable and infinite, we call it countably infinite.

定義

Theorem 8.5 (Infinite Means Dedekind Infinite).
∀X (X is infinite ⇔ (∃Y ⊆ X)(Y ̸= X ∧ |Y| = |X |)). 定理

Theorem 8.6.
N is infinite. 定理

Proof. Suppose, towards a contradiction, that N is finite. This means
|N| = |n| for some n ∈ N, so we have a bijection f : n ↪↠ N. Define
S := ∑n−1

i=0 f (i) and observe the following inequalities hold for all k ∈ n.

f (k) ⩽ f (k) + ∑
i∈n
i ̸=k

f (i) =
n−1

∑
i=0

f (i) = S < S + 1

Because (∀i ∈ n)(f (i) ∈ N), we know that S + 1 ∈ N, which implies
f (k) = S + 1 for some k ∈ n by the fact that f is surjective. However,
S+ 1 = f (k) < S+ 1 by the above analysis. � Thus, N is infinite. q.e.d.

infinity 77

Definition 8.3 (Infinite String).
Given a set A, an infinite string over A is a function f : N → A. 定義infinite

string

Theorem 8.7 (The Set of Natural Numbers is the Smallest Infinite Set).
If A is an infinite set, then |N| ⩽ |A|. 定理

Proof. Let A be an infinite set. We clearly have A ̸= ∅ because |A| ̸= 0,
so there exists some a0 ∈ A. We will now recursively define an injective
string fn : (n + 1) → A of length n + 1 for each n ∈ N below.

Base Case:
We let f0 : 1 → A be the string f0 := "a0" as the basis for recursion.

Recursive Case:
Let k ∈ N and suppose we have already defined fk = "a0 . . . ak". Note
that {a0, . . . , ak} ⊆ A and that A \ {a0, . . . , ak} ̸= ∅ because otherwise
|A| ⩽ |{a0, . . . , ak}| ⩽ k + 1, contradicting the fact that A is infinite.
Therefore, there must be some ak+1 ∈ A such that ak+1 ̸∈ {a0, . . . , ak}.
We now define fk+1 : (k + 2) → A to be the string fk+1 := fk "ak+1".

f0 = a0

f1 = a0 a1

f2 = a0 a1 a2
...

...
... . . .

fk = a0 a1 a2 · · · ak

fk+1 = a0 a1 a2 · · · ak ak+1
...

...
...

...
... . . .

f

=

a0

a1

a2
...

ak

ak+1
...

Figure 8.2: A visualization of the infinite
sequence ⟨ fn⟩ and the infinite string f .

With this infinite sequence of strings in hand, we now define f : N → A
by f (n) := fn(n) for each n ∈ N. This is the infinite string whose nth

character is the last character of fn. Let’s show that f is injective.

Let i, j ∈ N and suppose f (i) = f (j). This means fi(i) = ai = aj = f j(j)
by definition. Towards a contradiction, assume i ̸= j and without
loss of generality let i < j. Notice then that ai ∈ {a0, . . . , aj−1}, which
means aj ∈ {a0, . . . , aj−1}. However, we picked aj ∈ A such that
aj ̸∈ {a0, . . . , aj−1} in the recursive case of our definition. � Thus, i = j.

Therefore, since f : N ↪→ A, we have |N| ⩽ |A|. q.e.d.

Theorem 8.8 (Countable Unions of Countable Sets are Countable).
Consider a countable collection of countable sets A := {Ai | i ∈ N}, so
|A| ⩽ |N| and (∀i ∈ N)(|Ai| ⩽ |N|). The union over A is countable.∣∣∣∣∣∣

∞⋃
i=0

Ai

∣∣∣∣∣∣ = |∪A| ⩽ |N|

定理

Corollary 8.2.
If A is a finite set, then

∣∣∣{ f
∣∣ (∃k ∈ N)(f : k → A)

}∣∣∣ = |N|. 推論

Lemma 8.2.
If X is infinite and Y is a set where |Y| < |X|, then |X \Y| = |X|. 引理

78 discrete mathematics

Scarlet Smoke

Definition 8.4 (Cardinal Numbers).
The cardinal numbers are the canonical representatives for the differentcardinal

“sizes” sets can have (cf., section 6.1). The finite cardinals—which represent
the cardinalities of finite sets—are the natural numbers.1 To represent 1 For example,

∣∣{∅, {π, 2/7}, Z}
∣∣ = 3 be-

cause we can biject that set with {0, 1, 2}.the cardinalities of infinite sets, we introduce infinite cardinals called
aleph numbers.2 The first infinite cardinal ℵ0 represents countable infinity, 2 The aleph numbers are denoted using the

first letter of the Hebrew abjad ℵ, which
is said “aleph” in English. The cardinal
ℵ0 is usually pronounced “aleph naught”
or “aleph null” or even “aleph sub zero.”

ℵ0

corresponding to the cardinality of the smallest infinite set ℵ0 = |N|.
Inspired by our use of {0, 1, . . . , n − 1}—the set of the first n natural
numbers—to represent the finite cardinality n, we define ℵ0 := N and
use the set of all natural numbers to denote the first infinite cardinality.

定義

Definition 8.5 (Cardinal Arithmetic).
Let X and Y be sets with cardinalities κ := |X| and µ := |Y| respectively.
We add by taking the cardinality of the disjoint union of X with Y.

κ + µ :=
∣∣∣(X × {0}

)
∪
(
Y × {1}

)∣∣∣
We multiply by taking the cardinality of the Cartesian product X × Y.

κ · µ := |X × Y|

We exponentiate by counting the functions mapping exponent to base.

κµ :=
∣∣∣{ f

∣∣ f : Y → X
}∣∣∣

As it turns out, addition and multiplication are both associative and
commutative, and multiplication distributes over addition. We also
have the expected identities 0 and 1 for addition and multiplication
respectively. With the order κ ⩽ µ :⇔ ∃ f (f : X ↪→ Y) given to us by
the axiom of choice, these form an ordered commutative monoid. 定義

Lemma 8.3.
Given sets X and Y, if ℵ0 ⩽ |X| and |Y| ⩽ |X|, then |X ∪ Y| = |X|.

引理

Lemma 8.4.
Given sets X and Y, if ℵ0 ⩽ |X| and |Y| ⩽ |X|, then |X × Y| = |X|.

引理

Lemma 8.5.
If ℵ0 ⩽ |X| and 2 ⩽ |Y| ⩽ |X|, then the following are equal.∣∣∣{ f

∣∣ f : X → Y
}∣∣∣ = ∣∣∣{ f

∣∣ f : X → {0, 1}
}∣∣∣ = ∣∣P(X)

∣∣
引理

infinity 79

8.3 Apocalypse

Theorem 8.9 (Cantor’s Diagonal Argument).
ℵ0 <

∣∣∣{ f
∣∣ f : N → {0, 1}

}∣∣∣. 定理

Proof. Let B := { f | f : N → {0, 1}}. Towards a contradiction, assume
that ℵ0 ⩾ |B|, so that there exists a surjection φ : N ↠ B. Consider the
string δ : N → {0, 1} whose nth digit is given below for each n ∈ N.

δ(n) :=

0 if φ(n)(n) = 1

1 if φ(n)(n) = 0

Notice that δ ∈ B. Since φ is a surjection, we then know φ(k) = δ for
some k ∈ N. This implies (∀i ∈ n)(φ(k)(i) = δ(i)).1 However, observe.

1 As a reminder: if f : X → Y is a func-
tion, then f (x) = y :⇔ (x, y) ∈ f . If
we have another function g : X → Y with
the same domain and codomain, then
f = g means the two sets have the same
elements by the axiom of extensionality, so
f and g contain the same ordered pairs
(∀x∈X)(∀y∈Y)((x, y) ∈ f ⇔ (x, y) ∈ g).
This means precisely that f and g have
the same output on every given input.
(∀x ∈ X)(f (x) = g(x)).

δ(k) = 0 ⇔ φ(k)(k) = 1 ⇔ φ(k)(k) ̸= 0

δ(k) = 1 ⇔ φ(k)(k) = 0 ⇔ φ(k)(k) ̸= 1

This shows (∃i ∈ n)(φ(k)(i) ̸= δ(i)). � Therefore, ℵ0 < |B|. q.e.d.

φ(0) = 0 1 0 1 0 1 0 1 0 · · ·

φ(1) = 0 1 0 0 1 0 0 0 1 · · ·

φ(2) = 1 0 1 1 0 0 1 0 0 · · ·

φ(3) = 1 0 1 1 0 0 1 0 0 · · ·

φ(4) = 0 1 0 0 0 0 0 0 0 · · ·

φ(5) = 1 1 1 0 1 0 1 1 1 · · ·

φ(6) = 0 1 0 0 0 0 0 0 0 · · ·

φ(7) = 0 0 1 0 1 1 0 1 0 · · ·

φ(8) = 1 0 1 1 0 1 1 1 1 · · ·
...

...
...

...
...

...
...

...
... . . .

δ = 1 0 0 0 1 1 1 0 0 · · ·

Figure 8.3: An example φ : N → B of a
function mapping each natural number
to an infinite-length binary string. The
nth string φ(n) is visualized as the nth

row of an infinite matrix. The string δ
shown below the matrix is constructed
so that its characters disagree with the cor-
responding characters that lie along the
diagonal of the matrix. If the nth char-
acter in the nth string is zero, then δ(n)
is defined to be one. Conversely, if that
character is a one, then δ(n) is set to zero.

Corollary 8.3.
Let A be a set with |A| ⩾ 2. Then,

∣∣{ f | f : N → A}
∣∣ > ℵ0. Further, if

|A| ⩾ ℵ0, there are uncountably many infinite strings over A. 推論

80 discrete mathematics

The Four Horsemen

Theorem 8.10 (Cantor’s Theorem).
∀X
(
|X | <

∣∣P(X)
∣∣). 定理

Proof. Let X be a set and suppose that |X | ⩾ |P(X)| towards a con-
tradiction. We then know there exists a surjection f : X ↠ P(X).
Consider the set ∆ := {x ∈ X | x ̸∈ f (x)}. We know ∆ exists by the ax-
iom of separation, and we can clearly see that ∆ ⊆ X , so ∆ ∈ P(X). Thus,
since f is surjective, we know there exists δ ∈ X such that f (δ) = ∆.
We can now ask the simple question: is δ ∈ ∆ or is δ ̸∈ ∆?

Case 1:
If δ ∈ ∆, then δ ̸∈ f (δ) by definition. However, f (δ) = ∆. Thus, δ ̸∈ ∆. �

Case 2:
If δ ̸∈ ∆, then we know ¬(δ ̸∈ f (δ)) by definition, so that δ ∈ f (δ).
Recalling that f (δ) = ∆, this tells us δ ∈ ∆. �

In either case, we have forced a contradiction. Therefore, |X | <
∣∣P(X)

∣∣.
q.e.d.

Theorem 8.11 (Cantor’s Theorem – Taylor’s Version).
∀X
(∣∣P(X)

∣∣ > |X |
)

. 定理

Theorem 8.12 (Cantor’s Theorem – Johnstone’s Version).
If X is a set, then P(X) ̸= X/R for any equivalence relation R. 定理

Theorem 8.13 (Cantor’s Theorem – Lawvere’s Version).
Let S and V be sets such that a surjection φ : S ↠ { f | f : S → V}
exists. Then, every function ψ : V → V has a fixed point, which means
(∃v ∈ V)(ψ(v) = v). 定理

9

Modern Number Theory
“I don’t know why we are here, but I’m pretty sure that it is not
in order to enjoy ourselves.”

– Ludwig Wittgenstein

9.1 A Different Point of View

Definition 9.1 (Modular Congruence).
Let n ∈ N+. Given two integers a, b ∈ Z, we write a ≡ b (mod n) toa≡b (mod n)

mean that a is congruent to b modulo n as defined formally below.

a ≡ b (mod n) :⇔ n | a − b

In this expression, n is referred to as the modulus since this is the number
according to which we are measuring the residues a and b. 定義

Lemma 9.1.
Consider a modulus n ∈ N+ and take two arbitrary residues x, y ∈ Z

such that x ≡ y (mod n). Then, for any k ∈ Z, we know the following.

x + k ≡ y + k (mod n)

k · x ≡ k · y (mod n)

This means that adding and multiplying by an integer on both sides of
a given congruence maintains congruence modulo n. 引理

Corollary 9.1.
For any modulus n ∈ N+ and x ∈ Z, we have x ≡ x + n (mod n).

推論

Given a modulus n ∈ N+, congruence modulo n defines a relation on
Z, which we will denote nZ :=

{
(x, y) ∈ Z × Z

∣∣ x ≡ y (mod n)
}

.2 As 2 This is not the conventional way this no-
tation is used; nZ is typically used in al-
gebra to refer to something called a “coset”
of the group Z. Instead, we are using nZ
to refer to a relation. Although this is tech-
nically abusing notation, there is a fun-
damental correspondence between these
two concepts, and our use of the notation
is in the same spirit given the definition
we are about to introduce.

it happens, this happens to be a very nice kind of relation. First of all,
every integer x ∈ Z is related to itself, so this relation is reflexive.

(n · 0 = 0) ⇒
(
n | 0

)
⇒
(
n | x − x

)
⇒ x ≡ x (mod n)

82 discrete mathematics

Further, (y, x) ∈ nZ whenever (x, y) ∈ nZ, so this relation is symmetric.

x ≡ y (mod n) ⇒ n | x − y

⇒ (∃k ∈ Z)
(
nk = x − y

)
⇒ (∃k ∈ Z)

(
n(−k) = y − x

)
⇒ n | y − x

⇒ y ≡ x (mod n)

Finally, every time we have two legs (x, y) ∈ nZ and (y, z) ∈ nZ of a
triangle, we can always close the triangle with (x, z) ∈ nZ.

x ≡ y (mod n) ⇒ n | x − y

⇒ nk1 = x − y for some k1 ∈ Z

y ≡ z (mod n) ⇒ n | y − z

⇒ nk2 = y − z for some k2 ∈ Z(
nk1 = x − y

)
∧
(
nk2 = x − y

)
⇒ nk1 − nk2 = (x − y)− (y − z)

⇒ n(k1 − k2) = x − z

⇒ n | x − z

⇒ x ≡ z (mod n)

Therefore, nZ is an equivalence relation, so we can define equivalence
classes under this relation. Because these classes relate specifically to the
“congruence modulo n” relation, we sometimes call them residue classes
and define them as follows for each integer x ∈ Z below.

[x]n :=
{

y ∈ Z
∣∣ (x, y) ∈ nZ

}
=
{

y ∈ Z
∣∣ x ≡ y (mod n)

}
[x]n

These classes partition Z into a collection of nonempty, disjoint subsets
whose union covers all of the integers. The fact that x ≡ x + n (mod n)
for every x ∈ Z tells us that there are exactly n such equivalence classes.

Z/nZ :=
{
[x]n

∣∣∣ x ∈ Z
}
=
{
[0]n, [1]n, . . . , [n − 1]n

}
Z/nZ

Each of the possible remainders r ∈ {0, 1, . . . n − 1} after division by
n produces an equivalence class [r]n that contains all of the integers
whose remainder is r after dividing them by n.

Theorem 9.1.
Let n ∈ N+ be a modulus and consider a remainder r ∈ {0, 1, . . . , n− 1}.
Then, for any x ∈ Z, we have (∃q ∈ Z)(x = qn + r) ⇔ x ∈ [r]n. 定理

Corollary 9.2.
For any n ∈ N+, we have |Z/nZ| = n. 推論

modern number theory 83

9.2 The Algebraic Perspective

We can now notice something interesting. Take two integers x, y ∈ Z

with remainders rx, ry ∈ {0, 1, . . . , n − 1} respectively, so that x ∈ [rx]n
and y ∈ [ry]n. This implies that x ≡ rx (mod n) and y ≡ ry (mod n),
showing us x + y ≡ r1 + r2 (mod n). But then x + y ∈ [rx + ry]n tells
us that the sum x + y has remainder equal to the sum of the remainders
of x and y individually. It’s easy to verify that xy ∈ [rxry]n also holds.
So, we can use the algebra of Z to induce an algebraic structure on Z/nZ.

Definition 9.2 (Modular Arithmetic).
Let n ∈ N+ and let [x]n and [y]n be two arbitrary residue classes in
Z/nZ. We define modular addition between [x]n and [y]n as follows.

[x]n + [y]n := [x + y]n

We define modular multiplication between [x]n and [y]n as follows.

[x]n · [y]n := [x · y]n

The fact that Z/nZ partitions Z assures us these operations are functions
from (Z/nZ)× (Z/nZ) → Z/nZ and that they are well-defined. 定義

Lemma 9.2.
Let n ∈ N+ be a modulus and consider any three residues x, y, z ∈ Z.

x + y ≡ z (mod n) ⇔ [x]n + [y]n = [z]n
x · y ≡ z (mod n) ⇔ [x]n · [y]n = [z]n

x ≡ y (mod n) ⇔ [x]n = [y]n

This shows congruences over Z are equivalent to equations over Z/nZ.
引理

We have already encountered an example of a commutative ring—
namely, the set of integers Z with the usual addition and multiplication.
Z/nZ, however, is the first finite algebraic structure we’ve come across.
Does it behave like the infinite structure Z its operations derived from?

Addition on Z/nZ is associative, commutative, and there is an identity
element [0]n satisfying [x]n + [0]n = [x]n for every [x]n ∈ Z/nZ. The
same three properties hold true about multiplication, with the identity
element being [1]n satisfying [x]n[1]n = [x]n for all [x]n ∈ Z/nZ. Fur-
ther, multiplication distributes over addition just as it does for numbers.
So far, this means Z/nZ has the all of the algebraic properties N does.

We can now ask: does Z/nZ contain additive inverses for all of its
elements? More precisely, is the following statement true?(

∀[x]n ∈ Z/nZ
)(

∃[y]n ∈ Z/nZ
)(

[x]n + [y]n = [0]n
)

84 discrete mathematics

The answer here is clearly yes! Given [x]n ∈ Z/nZ, simply observe
that [x]n + [−x]n = [x − x]n = [0]n. With this observation, we now see
Z/nZ has inherited all of the algebraic properties of Z. This also tells us
that we can always solve congruences of the following form for x ∈ Z.

x + α ≡ β (mod n)

Narrow Field of View

However, there is one more distinctive thing about Z that distinguishes
it from Q and R: the only non-zero integer with a multiplicative inverse
is 1, the multiplicative identity. Is the same true about Z/nZ? More
precisely, for any given [x]n ∈ Z/nZ, when is the statement below true?(

∃[y]n ∈ Z/nZ
)(

[x]n · [y]n = [1]n
)

An equivalent way to formulate this question is: for what values x ∈ Z

does the following congruence have at least one integer solution y ∈ Z?

xy ≡ 1 (mod n)

To answer this question, let’s fix x ∈ Z and observe the following.

Figure 9.1: Διόφαντος ὁ Ἀλεξανδρεύς

(
∃y ∈ Z

)(
xy ≡ 1 (mod n)

)
⇔
(
∃y ∈ Z

)(
n | xy − 1

)
⇔
(
∃y1 ∈ Z

)(
∃y2 ∈ Z

)(
ny2 = xy1 − 1

)
⇔
(
∃y1 ∈ Z

)(
∃y2 ∈ Z

)(
ny2 = 1 − xy1

)
⇔
(
∃y1 ∈ Z

)(
∃y2 ∈ Z

)(
xy1 + ny2 = 1

)
⇔ gcd(x, n) = 1

The last equivalence above follows from Bézout’s identity—which states
that the greatest common divisor of x and n can always be expressed
as an integer linear combination of x and n—and the fact that the
greatest common divisor divides any linear combination of x and n.1 1 As a reminder: if a, b ∈ Z, then Bézout

tells us that there exist x, y ∈ Z such that
gcd(a, b) = ax + by.

We summarize this result with the following theorem.

Theorem 9.2.
For any n ∈ N+ and [x]n ∈ Z/nZ, the following equivalence holds.(

∃[y]n ∈ Z/nZ
)(

[x]n · [y]n = [1]n
)

⇔ gcd(x, n) = 1

As a consequence, the congruence xy ≡ 1 (mod n) has a solution y ∈ Z

if and only if x and n are relatively prime. 定理

Even more interestingly, the multiplicative inverse for x that we’ve
been looking for will precisely be given by its coefficient in the linear
combination, highlighted in red above. We can effectively compute these
coefficients with a modified version of the Euclidean division algorithm.

https://en.wikipedia.org/wiki/Diophantus

modern number theory 85

Algorithm 9.1 (Extended Euclidean Division).
Given a, b ∈ Z, we compute gcd(a, b) at the same time that we find The terms a, b, and s/t in the extended

Euclidean division algorithm are color-
coded to match the previous derivation
of the fact that xy ≡ 1 (mod n) is equiv-
alent to gcd(a, b) = 1.

coefficients s, t ∈ Z for which as + bt = gcd(a, b) guaranteed by Bézout.

egcd(a, b) :=

(a, 1, 0) if b = 0

(d, t, s − qt) if b ̸= 0, where

(d, s, t) = egcd(b, r)

a = qb + r

0 ⩽ r < |b|
q, r ∈ Z

This recursive algorithm returns an ordered triple egcd(a, b) = (d, s, t).
The first coordinate is the greatest common divisor d = gcd(a, b). The
second and third coordinates satisfy as + bt = gcd(a, b). 演算法

With this knowledge in hand, we now know precisely when congruences
of the following form are solvable over the integers.

αx + β ≡ γ (mod n)

These kinds of congruences are actually linear Diophantine equations
in disguise: equations of the form ax + by = c with a, b, c, x, y ∈ Z.
Extending our analysis, we have known when and how to find solutions
to systems of special kinds of linear Diophantine equations since 400 AD.
This astounding, ancient result is called the Chinese remainder theorem.

Figure 9.2: The mathematician 孙子,
whose identity is lost to time, first wrote
down this theorem in the孙子算经, one
of the Ten Computational Canons of the
Tang dynasty, between 200 and 400 AD.

Theorem 9.3 (Chinese Remainder Theorem).
Let k ∈ N+ and consider k moduli n0, n1, . . . , nk−1 ∈ N+ such that
gcd(ni, nj) = 1 whenever i ̸= j for all i, j ∈ k. Then, for any choice
of residues a0, a1, . . . , ak−1 ∈ Z, there exists a solution x ∈ Z to the
following system of modular congruences.

x ≡ a0 (mod n0)

x ≡ a1 (mod n1)

...

x ≡ ak−1 (mod nk−1)

Further, any other solution y is congruent to x modulo ∏k−1
i=0 ni. 定理

Proof. We will prove the existence of a solution to the system of linear
congruences. We leave proving uniqueness of the solution to the reader.

Let k ∈ N+ and consider moduli n0, n1, . . . , nk−1 ∈ N+ that are pairwise
relatively prime, which means (∀i, j ∈ k)(i ̸= j ⇒ gcd(ni, nj) = 1).
Recall this implies each nj is multiplicatively invertible modulo ni

whenever i ̸= j. For each j ̸= i, define nj,i to be the unique multiplicative
inverse of nj modulo ni in the range {0, 1, . . . ni − 1}, and let ni,i := 0.1

1 To the concerned reader: despite there
being many choices for “the” multiplica-
tive inverse, this is well-defined. Since
there must be an inverse for nj, we can
find z in the range 0 ⩽ z < ni such that
z ≡ nj (mod ni) and verify that the rest
of the proof will hold for that z.

https://en.wikipedia.org/wiki/Sunzi_Suanjing

86 discrete mathematics

Now, let a0, a1, . . . , ak−1 ∈ Z and define the following the integer.

x :=
k−1

∑
i=0

ai

k−1

∏
j=0

njnj,i

We obtain x by taking each target residue ai and multiplying it by all of
the moduli in the system of congruences except for its own modulus. The
idea is that, for each ℓ, this will force all of the terms in the sum except
aℓ to be divisible by nℓ—and thus congruent to 0 modulo nℓ—yielding
x ≡ aℓ (mod nℓ). We demonstrate this below. Let ℓ ∈ {0, 1, . . . , k− 1}.1 1 A note to the student: this is an example

of a situation that sometimes occurs in
mathematics where a simple idea turns
into a syntactically monstrous proof be-
cause of the need to keep track of a lot
of small details. Paradoxically, we can
obtain an elegant and much more intu-
itive proof of the Chinese remainder theorem
by generalizing the statement to a much
broader, more abstract class of objects
(namely, groups) rather than focussing on
elements of Z specifically.

x ≡
k−1

∑
i=0

ai

k−1

∏
j=0

njnj,i (mod nℓ)

≡
k−1

∑
i=0

ai

k−1

∏
j=0
j ̸=i

njnj,i (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=ℓ

njnj,ℓ +
k−1

∑
i=0
i ̸=ℓ

ai

k−1

∏
j=0
j ̸=i

njnj,i (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=ℓ

njnj,ℓ +
k−1

∑
i=0
i ̸=ℓ

aiaℓnℓnℓ,i

k−1

∏
j=0
j ̸=i
j ̸=ℓ

ainjnj,i (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=ℓ

njnj,ℓ + nℓ

k−1

∑
i=0
i ̸=ℓ

aiaℓnℓ,i

k−1

∏
j=0
j ̸=i
j ̸=ℓ

ainjnj,i (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=ℓ

njnj,ℓ + 0
k−1

∑
i=0
i ̸=ℓ

aiaℓnℓ,i

k−1

∏
j=0
j ̸=ℓ

ainjnj,i (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=i
j ̸=ℓ

njnj,ℓ + 0 (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=i
j ̸=ℓ

njnj,ℓ (mod nℓ)

≡ aℓ
k−1

∏
j=0
j ̸=i
j ̸=ℓ

1 (mod nℓ)

≡ aℓ (mod nℓ)

Since ℓ was arbitrary, x solves the system of congruences. q.e.d.

commuting out the aℓnℓnℓ,i factors

factoring out nℓ from each term

because nℓ ≡ 0 (mod nℓ)

since 0z ≡ 0 (mod nℓ) for every z ∈ Z

since z + 0 ≡ z (mod nℓ) for every z ∈ Z

since nj · nj,ℓ ≡ 1 (mod nℓ) by definition

since 1z ≡ z (mod nℓ) for every z ∈ Z

modern number theory 87

Peripheral Vision

As we saw, solving congruences modulo n often involves finding an
inverse for an element in Z/nZ. Although the extended Euclidean division
algorithm gives us an efficient way of computing these inverses when
they exist, it’s far too inconvenient for a human working by-hand.

Theorem 9.4 (Férmat’s Little Theorem).
Let p be prime. The following congruence is then true for any a ∈ Z.

ap ≡ a (mod p)

Further, for any a ∈ Z such that gcd(a, p) = 1, the following is true.

ap−1 ≡ 1 (mod p)

This is equivalent to saying [a]p−1
p = [1]p for every [a]p ̸= [0]p. 定理

Figure 9.3: Leonhard Euler is the name-
sake for the totient function φe, among
a litany of other mathematical concepts,
definitions, theorems, and constructions.

We define the totient of n ∈ N as the amount of naturals below n that are
coprime with n. Formally, φe(n) :=

∣∣{x ∈ N+ | x ⩽ n ∧ gcd(x, n) = 1}
∣∣,

where φe : N → N, known as Euler’s totient function. We now see an
important connection between Fermat’s little theorem and Euler’s totient.

Lemma 9.3.
If p is a prime number, then φe(p) = p − 1. 引理

As it turns out, this is exactly counts the elements of Z/nZ that are
multiplicatively invertible. Since φe(p) = p− 1 when p is prime, this gives
us some insight into Fermat’s little theorem: when a ̸≡ 0 (mod p), then
multiplying a by itself for as many times as there are multiplicatively
invertible elements in Z/nZ produces a number congruent to 1 modulo
p. In other words, we know aφe(p) ≡ 1 (mod p) when gcd(a, p) = 1.
Does this remarkable observation generalize? Yes, it does!

Theorem 9.5 (Euler’s Theorem).
For any n ∈ N+ and a ∈ Z such that gcd(a, n) = 1, the following is true.

aφe(n) ≡ 1 (mod n)

This is equivalent to saying [a]φe(n)
n = [1]n whenever [a]n is invertible.

定理

Euler’s totient function has a few interesting and beautiful properties,
but none is more important than the fact that it splits multiplicatively
over the prime power divisors of its input.

Theorem 9.6.
If a, b ∈ N+ such that gcd(a, b) = 1, then φe(ab) = φe(a)φe(b). 定理

https://en.wikipedia.org/wiki/Leonhard_Euler

88 discrete mathematics

There is a deeper truth underlying this theorem. When a and b are co-
prime, then Z/abZ has the same algebraic structure1 as (Z/aZ)× (Z/bZ) 1 When two sets G and H have the same

algebraic structure, we say that they are
isomorphic and use the notation G ∼= H.

if we extend the definitions of modular addition and multiplication to
ordered pairs by adding or multiplying their respective coordinates.2 In 2 Given sets G and H with operations ⋆G

and ⋆H respectively, we can induce an
algebraic structure on G ×H by defining
(g1, h1) ⋆ (g2, h2) := (g1 ⋆G g2, h1 ⋆H h2).

spirit, this says that moving around on the integer number line from the
perspective of ab is equivalent to moving around on a 2-dimensional
integer grid, where one of the axes behaves like Z/aZ and the other
behaves like Z/bZ. This idea can be used to further generalize the
Chinese remainder theorem to Z/nZ, and to groups even more generally.

9.3 Asymmetric Cryptography

The RSA cryptosystem is an algorithm for performing asymmetric en-
cryption, also known as public key encryption. Its security is reliant on two
key observations related to factoring n ∈ N into a product of primes.

1. The fastest known algorithm for factoring n is O(e
3√64/9(ln n)1/3(ln ln n)2/3

).

2. The fastest known way to find the kth root of [x]n is by factoring n.

Figure 9.4: RSA cryptography gets its
name from Rivest, Shamir, and Adleman,
the coauthors of the original 1977 paper.

Suppose that Gaius Julius Caesar, currently on campaign in Transalpine
Gaul, wants to securely receive messages from his general Marcus
Antonius in Rome about the brewing civil war. The algorithm works
in two stages, involving private data that must remain secret or be
destroyed and public data that can be shared through insecure channels
without compromising the security of the system.

def is_prime(x):

for n in range(2, int(sqrt(x) + 1)):

if x % n == 0:

return False

return True

Figure 9.5: A simple Python function for
recursively deciding whether an integer x
is prime in O(

√
x) time and O(1) space.

Key Generation

1. Caesar picks two large prime numbers p and q.

2. He then defines n := pq. n is the public modulus.

3. He now computes φe(n) = (p − 1)(q − 1). φe(n) is the private modulus.

(a) φe(n) = φe(pq) = φe(p)φe(q) = (p − 1)(q − 1) by theorem 9.6.

4. He then picks d such that 1 < d < φe(n) and gcd(d,φe(n)) = 1. d is the private decryption key.

(a) Caesar verifies gcd
(
d, φe(n)

)
= 1 with the extended Euclidean algo-

rithm, simultaneously obtaining e such that ed ≡ 1 (mod φe(n)). e is the public encryption key.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

modern number theory 89

def mult_inv(e, phi, s=None, t=None):

s = [1, 0] if s is None else s

t = [0, 1] if t is None else t

e, phi = (min(e, phi), max(e, phi))

q = 1

while phi >= e * q:

q += 1

q -= 1

r = phi - e*q

if r == 0:

return t[1]

else:

s = [s[1], s[0] - q*s[1]]

t = [t[1], t[0] - q*t[1]]

return mult_inv(r, e, s=s, t=t)

Figure 9.6: A recursive Python imple-
mentation of finding the multiplicative
inverse of an integer e modulo phi using
the extended Euclidean division algorithm.

Julius Caesar now has a public key (e, n) and a private key (d, n).
He transmits (e, n) to Marcus Antonius in Rome in plain text via
messenger, keeping (d, n) securely hidden. The secrets p, q, and φe(n)
are all immediately destroyed to minimize his vulnerability to attack.

Encryption

1. Having received (e, n), Marcus prepares a message m—a binary
string—and chunks it into substrings m = m0 m1 · · · mk−1

such that (∀i ∈ k)(0 < mi < n ∧ gcd(mi, n) = 1).1 1 If these conditions are not ensured, then
information will be lost during the en-
cryption and decryption processes.2. Marcus encrypts each chunk mi by computing ci := mi

e − ⌊mi
e/n⌋n.

(a) This guarantees that ci ≡ mi
e (mod n) and 0 < ci < n.

3. Marcus now sends the cypher c := c0 c1 · · · ck−1 to Caesar.

def mod_exp(a, b, n, exp=1):

if b <= 0:

return exp

else:

return mod_exp(a, b - 1, n, exp=(exp*a % n))

Figure 9.7: An efficient Python algorithm
for recursively computing ab modulo n

in O(b) time and O(1) space.

90 discrete mathematics

Decryption

1. Caesar receives the encrypted message c = c0 c1 · · · ck−1.

2. He now decrypts each chunk ci by computing µi := ci
d − ⌊ci

d/n⌋n.

(a) This guarantees that µi ≡ ci
d (mod n) and 0 < µi < n.

3. The fully decrypted message is then µ := µ0 µ1 · · · µk−1.

The decrypted chunks µi each have the following remarkable property.

µi ≡ mi (mod n)

This fact, along with the constraint 0 < µi < n enforced for each chunk,
confirms that µ = µ0 µ1 · · · µk−1 = m0 m1 · · · mk−1 = m,
ensuring the RSA algorithm correctly encrypts and decrypts messages.

Theorem 9.7 (Correctness of the RSA Algorithm).
Let n := pq for two distinct primes p ̸= q and suppose e, d ∈ Z satisfy
ed ≡ 1 (mod φe(n)). The following then holds for any message M ∈ N.(

Me)d ≡ M (mod n)

This guarantees the correctness of the RSA algorithm. 定理

Proof. Assume the conditions provided above and recall the following.

φe(n) = φe(pq) = φe(p)φe(q) = (p − 1)(q − 1)

Since ed ≡ 1 (mod φe(n)), we know (p − 1)(q − 1) | ed − 1, so that
p − 1 | ed − 1 and q − 1 | ed − 1. There then exist k, ℓ ∈ Z as follows.

(p − 1)k + 1 = ed and (q − 1)ℓ+ 1 = ed

We will now show (Me)d ≡ M (mod p). There are two cases.

Case 1:
Assume M ≡ 0 (mod p). Clearly then Med ≡ 0ed ≡ 0 (mod p).

Case 2:
Assume M ̸≡ 0 (mod p). Since p is prime, we then know gcd(p, M) = 1.
Férmat’s little theorem hence requires (Mk)p−1 ≡ 1 (mod p). Observe.

Med ≡ M(p−1)k+1 (mod p)

≡ M(p−1)k M (mod p)

≡ (Mk)p−1 M (mod p)

≡ 1 · M (mod p)

≡ M (mod p)

Therefore, (Me)d ≡ M (mod p).

Mutatis mutandis, we have that (Me)d ≡ M (mod q). We therefore
conclude Med ≡ M (mod pq) by the Chinese remainder theorem. q.e.d.

Index

atomic, 4
axiom, 15

conjunction, 11
contrapositive, 23

disjunction, 11
duality

logical, 11

equivalence
logical, 16
material, 13
nonequivalence, 16
propositional, 8

formula
propositional, 14

logical
nonequivalence, 16

material
equivalence, 13
implication, 12

negation, 10

proof, 15
proposition

formal, 13
propositional

formula, 14
variable, 14

quantifier
existential, 29
unique existential, 29
universal, 29

sentence, 4

theorem, 17

	Logic
	Language
	A Brief History of...
	Syntax and Semantics
	A Recurring Theme

	Zeroth-Order Logic
	Truth Values
	Logical Connectives
	The Propositional Logic

	First-Order Logic
	A More Expressive Language
	Rules of Inference
	The Art of Writing Proofs

	Mathematics
	Foundations
	Informal Notions
	Set Theory
	Functions
	Lifting the Veil

	Arithmetic
	The Categorical Structure of Arithmetic
	Abstraction and Extension

	Ancient Number Theory
	The Greeks

	Combinatorics
	Judging the Size of a Set
	Compositionality and Invertibility
	Counting with Our Fingers
	Structure and Substructure
	Arrangement and Derangement
	Equivalence and Partitioning
	Simple Graphs

	Asymptotic Analysis
	Infinity
	Silence
	The Sound of Seven Trumpets
	Apocalypse

	Modern Number Theory
	A Different Point of View
	The Algebraic Perspective
	Asymmetric Cryptography

	Index

