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Figure 4: Top Cora SSTs with Bidirected Citations – (See Sec-
tion 5.3.2) – SSTs 2, 3, and 6 indicate that if articles 𝐴 and
𝐵 mutually cite each other, 𝐴 tends to cite whatever 𝐵 cites
unless another article 𝐶 who bi-cites with 𝐵 does not. SSTs
4 and 5 indicate that articles are more likely to bi-cite each
other if they cite the same articles.
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Figure 5: Top Cora ML SSTs Without Bidirected Citations –
(See Section 5.3.2) – The top SST indicates that if an edge
closes a 4-cycle that is considered a strong indicator that the
edge is not genuine. Similarly, SST 10 suggests that a 3-cycle
is unlikely, but not as unlikely as a 4-cycle. Other than SSTs
1 and 4, the top SSTs are positive indicators. SSTs 2 - 9, and 11
- 12 all include some kind of “transitivity”, that nodes which
cite (or are cited by) similar articles cite each other.

or deletions) using temporal graph attention layers. A Multi-Layer
Perceptron decoder allows the TGN to score candidate edges with
probabilities for evaluation of future link prediction.

5.4.2 Quantitative Results. Quantitative results are listed in Ta-
ble 4. Once again our SST-based link predictors are among the top
performers. Again, we suggest that these numbers be taken with a
grain of salt because we simply used the GNNs’ default hyperpa-
rameters. Chiefly, our tests demonstrate that our SSTs’ elegant and
interpretable results are validated by good prediction performance.

Note that we bypassed computing AUPR3 on the Wikipedia
graph due to the sheer size of the false test edge set - 𝑂 ((105)2).
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Figure 6: Top 3-Node SSTs for Wikipedia Link Additions –
Main Takeaway: Wedges only close to triangles when the
wedge had recent edges (e.g. Newest) appearing for the first
ormaybe second time (low frequency, e.g. ‘1’), ideally includ-
ing an edge pointing to the target node of the new edge.

5.4.3 Interpretable Temporal Results. To demonstrate the inter-
pretability of SSTs on temporal graphs, we explore the three-node
SSTs on the Wikipedia edge additions graph. We find that, unlike
the general assumption of triadic closure, according to our model
many triangles are considered unlikely to close. It is only the tri-
angles where certain connection combinations in the wedge were
formed recently (indicated by our recency trait) and for the first
(or maybe second) time (indicated by our frequency trait) that the
wedge is quite likely to close into a triangle. See Figure 6. This is ev-
idenced quantitatively by the fact that the three-node SST predictor
performed much better than the Common Neighbors.

6 CONCLUSION
Wedefined an elegant generalization of Triadic Closure, the Subgraph-
to-Subgraph Transition (SST). This generalization allowed us to use
a simple classifier, the Linear SVM, to create interpretable link pre-
diction models which performed comparatively with state of the art
graph neural networks. We expect that the Subgraph-to-Subgraph
Transition will become a standard tool in modeling graphs and
that future research will produce new and creative ways to use and
efficiently count SSTs.
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