Problem Set 10

Discrete Mathematics

Due on the $22^{\text {nd }}$ of April, 2024
(40 pts) 1. Construct-with proof-the explicit functions requested below.
(a) A bijection from $\{x \in \mathbb{R} \mid-1<x<1\}$ to $\{x \in \mathbb{R} \mid-\pi<x<\pi\}$.
(b) A surjection from \mathbb{N} to $\{p \mid p$ is prime $\}$.
(c) An injection from X to $\mathbb{P}(X)$ for every set X.
(d) A surjection from $\mathbb{P}(X)$ to X for every set $X \neq \varnothing$.
(30 pts) 2. Let A be an arbitrary finite set of cardinality $|A|=n$, where $n \in \mathbb{N}$. How many finite strings over A are there?
(30 pts) 3. Imagine that, one day, you encounter a library. ${ }^{1}$ At the entrance of this library is an enormous tome \mathscr{B} listing all of the possible sentences in the English language, indexed by natural numbers.

Walking past the entrance, you see that the library has rows of bookshelves numbered $0,1,2, \ldots$, so that there is exactly one row of books for each $n \in \mathbb{N}$. A great owl-perched on the pedestal that supports \mathscr{B}-informs you that, for each $n \in \mathbb{N}$, the $n^{\text {th }}$ row of bookshelves contains all of the books that could possibly ever be that begin with the $n^{\text {th }}$ sentence in \mathscr{B}. With the sound of granite scraping against marble, the doors to the library close behind you. The owl makes you the following proposal: you will be free to go if and only if you can read every book in the library in a countable amount of time.

Will you be set free? The owl demands a proof to justify your answer.

[^0]
[^0]: ${ }^{1}$ This library is so massive and so complete a collection of literary works that it even contains books of infinite length.

