Problem Set 7 *Discrete Mathematics Due on the* 27th *of March,* 2024

- (10 pts) 1. Let *X* be a set. Show that $(\forall Y \in \mathbb{P}(X))(|Y| \leq |X|)$.
- (15 pts) 2. Show that $\forall X \forall Y (|X| \leq |Y| \Rightarrow \exists Z (Z \subseteq Y \land |X| = |Z|)).$
- (15 pts) 3. Let X, Y, Z be sets and consider $f : X \to Y$ and $g : Y \to Z$. We define the *composition* of f with g to be the function $g \circ f : X \to Z$ given by $(g \circ f)(x) \coloneqq g(f(x))$ for all $x \in X$.
 - (a) Show that, if *f* and *g* are both injections, then $g \circ f$ is injective.
 - (b) Show that, if *f* and *g* are both surjections, then $g \circ f$ is surjective.
 - (c) Show that, if *f* and *g* are both bijections, then $g \circ f$ is bijective.
- (30 pts) 4. For this problem, let *X* and *Y* be nonempty sets and let $f : X \to Y$.
 - (a) If *f* is injective, show there exists $g: Y \to X$ where $g \circ f = id_X$.
 - (b) If *f* is surjective, show there exists $g : Y \to X$ where $f \circ g = id_Y$.
 - (c) If *f* is a bijection, then show that there exists a *unique* function $g: Y \to X$ such that $g \circ f = id_X$ and $f \circ g = id_Y$.
- (30 pts) 5. *Euler's totient function* is the function $\varphi_e : \mathbb{N} \to \mathbb{N}$ that counts how many positive integers are *coprime* with each $n \in \mathbb{N}$, defined below.

$$\varphi_{e}(n) \coloneqq \left| \left\{ z \in \mathbb{N} \mid 1 \leqslant z \leqslant n \land \gcd(z, n) = 1 \right\} \right|$$

- (a) If $p, k, m \in \mathbb{N}_+$ are *positive* naturals with p prime and $m \leq p^k$, then prove that $gcd(p^k, m) \neq 1 \Leftrightarrow p \mid m$.
- (b) If *p* is prime, then prove that $\varphi_e(p) = p 1$.
- (c) If *p* is prime and $k \in \mathbb{N}_+$, then prove that $\varphi_e(p^k) = p^k p^{k-1}$.

Since the codomain of f and the domain of g are the same, they are *compatible*, and their composition is sensibly defined.

These are called *monomorphisms*.

These are called *epimorphisms*.

These are called *isomorphisms*.

Hint: count the multiples of p.