Problem Set 7

Discrete Mathematics

Due on the $27^{\text {th }}$ of March, 2024
(10 pts) 1. Let X be a set. Show that $(\forall Y \in \mathbb{P}(X))(|Y| \leqslant|X|)$.
(15 pts) 2. Show that $\forall X \forall Y(|X| \leqslant|Y| \Rightarrow \exists Z(Z \subseteq Y \wedge|X|=|Z|))$.
(15 pts) 3. Let X, Y, Z be sets and consider $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. We define the composition of f with g to be the function $g \circ f: X \rightarrow Z$ given by $(g \circ f)(x):=g(f(x))$ for all $x \in X$.
(a) Show that, if f and g are both injections, then $g \circ f$ is injective.
(b) Show that, if f and g are both surjections, then $g \circ f$ is surjective.
(c) Show that, if f and g are both bijections, then $g \circ f$ is bijective.

Since the codomain of f and the domain of g are the same, they are compatible, and their composition is sensibly defined.

These are called monomorphisms.
These are called epimorphisms.
These are called isomorphisms.
(30 pts) 4. For this problem, let X and Y be nonempty sets and let $f: X \rightarrow Y$.
(a) If f is injective, show there exists $g: Y \rightarrow X$ where $g \circ f=i d_{X}$.
(b) If f is surjective, show there exists $g: Y \rightarrow X$ where $f \circ g=i d_{Y}$.
(c) If f is a bijection, then show that there exists a miqique function $g: Y \rightarrow X$ such that $g \circ f=\operatorname{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.
(30 pts) 5. Euler's totient function is the function $\varphi_{e}: \mathbb{N} \rightarrow \mathbb{N}$ that counts how many positive integers are coprime with each $n \in \mathbb{N}$, defined below.

$$
\varphi_{e}(n):=|\{z \in \mathbb{N} \mid 1 \leqslant z \leqslant n \wedge \operatorname{gcd}(z, n)=1\}|
$$

(a) If $p, k, m \in \mathbb{N}_{+}$are positive naturals with p prime and $m \leqslant p^{k}$, then prove that $\operatorname{gcd}\left(p^{k}, m\right) \neq 1 \Leftrightarrow p \mid m$.
(b) If p is prime, then prove that $\varphi_{e}(p)=p-1$.
(c) If p is prime and $k \in \mathbb{N}_{+}$, then prove that $\varphi_{e}\left(p^{k}\right)=p^{k}-p^{k-1}$.

Hint: count the multiples of p.

