Problem Set 6

Discrete Mathematics

Due on the 5th of March, 2024

All basic arithmetic and algebraic facts about \mathbb{N} and \mathbb{Z} are now yours to use.

(20 pts) 1.(a) Show that $(c \neq 0 \land ac \mid bc) \Rightarrow (a \mid b)$ for all $a, b, c \in \mathbb{Z}$. (b) Show that $(n \mid x \land n \mid y) \Rightarrow (n \mid ax + by)$ for all $n, x, y, a, b \in \mathbb{Z}$.

- (20 pts) 2. For all $z \in \mathbb{Z}$, show that z is even implies z is not odd.
- (20 pts) 3.(a) For all $n \in \mathbb{N}$, show that *n* is even implies n + 1 is odd.

(b) For all $n \in \mathbb{N}$, show that *n* is odd implies n + 1 is even.

- (20 pts) 4. Show that $3 \mid n^3 n$ for all $n \in \mathbb{N}$.¹
- (20 pts) 5. The *Fibonacci sequence* is the recursive function $\mathcal{F} : \mathbb{N} \to \mathbb{N}$ below.

$$\begin{split} \mathcal{F}(0) &\coloneqq 0\\ \mathcal{F}(1) &\coloneqq 1\\ \mathcal{F}(n+2) &\coloneqq \mathcal{F}(n+1) + \mathcal{F}(n) \end{split}$$
 Show that $1 + \sum_{i=0}^{n} \mathcal{F}(i) = \mathcal{F}(n+2)$ for all $n \in \mathbb{N}.$

¹ *Hint: try a proof by induction.*