Problem Set 5

Discrete Mathematics

Due on the $27^{\text {th }}$ of February, 2024
(10 pts) 1. Find and explain the flaw(s) in this argument.
We prove every nonempty set of people all have the same age.
Proof. We denote the age of a person p by $\alpha(p)$.
Basis Step:
Suppose $P=\{p\}$ is a set with one person in it. Clearly, all the people in P have the same age as each other.

Inductive Step:

Let $k \in \mathbb{N}_{+}$and suppose any set of k-many people all have the same age. Let $P=\left\{p_{1}, p_{2}, \ldots p_{k}, p_{k+1}\right\}$ be a set with $k+1$ people in it. Consider $L:=\left\{p_{1}, \ldots p_{k}\right\}$ and $R:=\left\{p_{2}, \ldots p_{k+1}\right\}$. Since L and R both have k people, we know everyone in these sets has the same age by the inductive hypothesis.

Let $\ell, r \in P$. If $\ell \in L \wedge r \in L$, then $\alpha(\ell)=\alpha(r)$. Similarly, if $\ell \in R \wedge r \in R$, then $\alpha(\ell)=\alpha(r)$. Now, suppose $\ell \in L \wedge r \in R$.

$$
\alpha(\ell)=\alpha\left(p_{1}\right)=\alpha\left(p_{2}\right)=\alpha\left(p_{k+1}\right)=\alpha(r)
$$

So, all people in P have the same age.
Therefore, everyone on Earth has the same age.
2. Show that $\forall x(x \neq x \cup\{x\})$.
3. We will work up to a proof of the commutativity of addition on \mathbb{N}.
(a) Show $(\forall x \in \mathbb{N})(x+0=0+x)$.
(b) Show $(\forall x, y \in \mathbb{N})(x+\mathfrak{s}(y)=\mathfrak{s}(y)+x)$.
(c) $\operatorname{Show}(\forall x, y \in \mathbb{N})(x+y=y+x)$.
(15 pts) 4. Show $(\forall x, y, z \in \mathbb{N})(x \cdot(y+z)=(x \cdot y)+(x \cdot z))$.
(20 pts) 5. For this problem, you may assume the commutativity and associativity of addition and multiplication over \mathbb{N}. You may also assume multiplication distributes over addition on \mathbb{N}. Prove the following statement for all $n \in \mathbb{N}$.

$$
1+\sum_{i=0}^{n} 2^{i}=2^{n+1}
$$

(20 pts) 6. We say x is \in-transitive by definition when $(\forall y \in x)(\forall z \in y)(z \in x)$. Show that every natural number is \in-transitive.

Recall that the natural numbers are defined recursively as follows.

$$
\begin{aligned}
0 & :=\varnothing \\
\mathfrak{s}(n) & :=n \cup\{n\}
\end{aligned}
$$

Addition on \mathbb{N} is defined below.

$$
\begin{aligned}
n+0 & :=n \\
n+\mathfrak{s}(m) & :=\mathfrak{s}(n+m)
\end{aligned}
$$

Multiplication on \mathbb{N} is defined below.

$$
\begin{aligned}
n \cdot 0 & :=0 \\
n \cdot \mathfrak{s}(m) & :=(n \cdot m)+n
\end{aligned}
$$

Exponentiation on \mathbb{N} is defined below.

$$
\begin{aligned}
n^{0} & :=1 \\
n^{\mathfrak{s}(m)} & :=n \cdot n^{m}
\end{aligned}
$$

We define the iterated sum of a sequence of terms $f(0), f(1), f(2), \ldots$ as follows.

$$
\begin{aligned}
& \sum_{i=0}^{0} f(i):=f(0) \\
& \sum_{i=0}^{\mathfrak{s}(n)} f(i):=\left(\sum_{i=0}^{n} f(i)\right)+f(\mathfrak{s}(n))
\end{aligned}
$$

You may rely on the following theorems: $(\forall x \in \mathbb{N})(\mathfrak{s}(x)=x+1)$. $(\forall x \in \mathbb{N})(\mathfrak{s}(x)=1+x)$.
$(\forall x, y, z \in \mathbb{N})(x+(y+z)=(x+y)+z)$.

