Problem Set 3

Discrete Mathematics

Due on the $12^{\text {th }}$ of February, 2024

In addition to the axioms and rules of inference, you may rely on: all proven theorems, Implication Elimination, Hilbert's First E Second Axioms.
(10 pts) 1. Prove each of the following statements for any propositions φ, ψ, ξ.
(a) $(\varphi \rightarrow \psi),(\psi \rightarrow \xi) \vdash(\varphi \rightarrow \xi)$
(b) $\varphi, \psi \vdash \varphi \wedge \psi$
(40 pts) 2. Prove each of the following statements for any propositions φ, ψ, ξ.
(a) $\vdash \varphi \rightarrow \varphi$
(b) $\vdash(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$
(c) $\vdash \neg \varphi \rightarrow(\varphi \rightarrow \neg \psi)$
(d) $\varphi \wedge \psi \vdash \varphi$
(e) $\vdash \top$
(30 pts) 3. Prove each of the following statements for any propositions φ, ψ, ξ, χ.
(a) $\varphi \vdash(\varphi \vee \psi)$
(b) $(\varphi \rightarrow \xi),(\psi \rightarrow \xi),(\varphi \vee \psi) \vdash \xi$
(c) $\varphi, \neg \varphi \vdash \psi$
(d) $(\varphi \vee \psi), \neg \varphi \vdash \psi$
(e) $(\varphi \rightarrow \xi),(\psi \rightarrow \chi),(\varphi \vee \psi) \vdash \xi \vee \chi$
(10 pts) 4. Let \mathcal{L} be a binary predicate. Prove the following statement. ${ }^{1}$

$$
\vdash \neg \exists x \forall y(\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))
$$

(10 pts) 5. Consider a universe of discourse consisting of every natural number. Recall that a positive integer is prime when it has exactly two positive divisors: one and itself.

Let $\omega(x):=$ " x is an odd number."
Let $\pi(x):=$ " x is a prime number."
Further, suppose the following statements only contain propositions.
(a) Prove φ, where φ is the statement $\varphi \vdash \forall x(\omega(x) \rightarrow \pi(x))$.
(b) Prove $\forall x(\omega(x) \rightarrow \pi(x))$.

