\qquad NETID: \qquad

Exam 1.p. 3

Discrete Mathematics
$8^{\text {th }}$ of March, 2024, Spring

1 Answer the following questions by marking either True or False.

Make sure your name and NetID is written at the top of each page of this exam. Write legibly. Read carefully.

1. $\{\varnothing\}$ is a subset of every set.True
O False
2. $\cup \mathfrak{s}(n)=n$ for every natural number $n \in \mathbb{N}$.True
O False
3. $\cup \mathfrak{s}(x)=x$ for every set x.True
\bigcirc False
4. $(\forall \mathcal{A} \subseteq \mathbb{Z})(\mathcal{A} \neq \varnothing \Rightarrow(\exists a \in \mathcal{A})(\forall b \in \mathcal{A})(a \leqslant b))$.

O True
\bigcirc False
5. This sentence has no truth value.

O TrueFalse
6. The statement φ is a proposition, where $\varphi:=$ " $\varphi \rightarrow(\varnothing \in \varnothing)$."TrueFalse
7. $(\forall x \in \mathbb{N})(\forall y \in \mathbb{N})(((x \leqslant y) \wedge(x \neq y)) \Rightarrow x \in y)$.TrueFalse
8. Every natural number is the successor of another natural number.TrueFalse
9. $\operatorname{gcd}(a, b) \leqslant \operatorname{lcm}(a, b)$ for every $a, b \in \mathbb{Z}$.TrueFalse
10. If $\varphi(\cdot)$ is a predicate with one free variable, then $\{z \mid \varphi(z)\}$ is a set.TrueFalse

2 Any use of logical axioms, rules of inference, or theorems of logic must be explicitly stated. You may not appeal to truth tables.

Show that $(\alpha \vee \beta),(\beta \rightarrow \alpha),(\alpha \rightarrow \gamma) \vdash \gamma$ for any propositions α, β, γ.

3 You may rely on any theorems we have proven.
Show that $\forall x \forall y(x \subseteq y \Rightarrow x \subseteq x \cap y)$.
\qquad NETID: \qquad

4 You may only rely on the assumptions in the margin.

1. Provide a recursive definition of addition for natural numbers.
2. Provide a recursive definition of multiplication for natural numbers.
3. Show that $(\forall a \in \mathbb{N})(\forall b \in \mathbb{N})(\forall c \in \mathbb{N})(a \cdot(b \cdot c)=(a \cdot b) \cdot c)$.

$$
010
$$

1. $0 \in \mathbb{N}$.
2. $(\forall n \in \mathbb{N})(\mathfrak{s}(n) \neq 0)$.
3. $(\forall n \in \mathbb{N})(\mathfrak{s}(n) \in \mathbb{N})$.
4. $(\forall n, m \in \mathbb{N})(\mathfrak{s}(n)=\mathfrak{s}(m) \Rightarrow n=m)$.
5. The mathematical induction schema.
6. $(\forall a, b, c \in \mathbb{N})(a \cdot(b+c)=(a \cdot b)+(a \cdot c))$.

5 You may rely on any proven theorems.

1. Provide a recursive definition of the Fibonacci sequence $\mathcal{F}: \mathbb{N} \rightarrow \mathbb{N}$.
2. Show $\sum_{i=0}^{n} \mathcal{F}(2 i+1)=\mathcal{F}(2 n+2)$ for all $n \in \mathbb{N}$.
