NETID:

Exam 1.p.3 Discrete Mathematics 8th of March, 2024, Spring

1 Answer the following questions by marking either True or False.

- 1. $\{\emptyset\}$ is a subset of every set.
 - ⊖ True
 - False
- 2. $\cup \mathfrak{s}(n) = n$ for every natural number $n \in \mathbb{N}$.
 - True
 - False
- 3. $\cup \mathfrak{s}(x) = x$ for every set *x*.
 - True
 - False

4. $(\forall \mathcal{A} \subseteq \mathbb{Z})(\mathcal{A} \neq \emptyset \Rightarrow (\exists a \in \mathcal{A})(\forall b \in \mathcal{A})(a \leq b)).$

- True
- False
- 5. This sentence has no truth value.
 - True
 - False
- 6. The statement φ is a proposition, where $\varphi := "\varphi \to (\emptyset \in \emptyset)$."
 - True
 - \bigcirc False

7. $(\forall x \in \mathbb{N}) (\forall y \in \mathbb{N}) (((x \leq y) \land (x \neq y)) \Rightarrow x \in y).$

- ⊖ True
- False
- 8. Every natural number is the successor of another natural number.
 - ⊖ True
 - False
- 9. $gcd(a, b) \leq lcm(a, b)$ for every $a, b \in \mathbb{Z}$.
 - True
 - False

10. If $\varphi(\cdot)$ is a predicate with one free variable, then $\{z \mid \varphi(z)\}$ is a set.

- ⊖ True
- \bigcirc False

Make sure your name and NetID is written at the top of each page of this exam. Write legibly. Read carefully. 2 Any use of logical axioms, rules of inference, or theorems of logic must be explicitly stated. You may not appeal to truth tables.

Show that $(\alpha \lor \beta), (\beta \to \alpha), (\alpha \to \gamma) \vdash \gamma$ for any propositions α, β, γ .

3 You may rely on any theorems we have proven.

Show that $\forall x \forall y (x \subseteq y \Rightarrow x \subseteq x \cap y)$.

- 4 You may only rely on the assumptions in the margin.
 - 1. Provide a *recursive* definition of addition for natural numbers.
- $\text{1. } 0\in \mathbb{N}.$
- 2. $(\forall n \in \mathbb{N})(\mathfrak{s}(n) \neq 0).$
- 3. $(\forall n \in \mathbb{N})(\mathfrak{s}(n) \in \mathbb{N}).$
- 4. $(\forall n, m \in \mathbb{N})(\mathfrak{s}(n) = \mathfrak{s}(m) \Rightarrow n = m).$
- 5. The mathematical induction schema.
- 6. $(\forall a, b, c \in \mathbb{N})(a \cdot (b + c) = (a \cdot b) + (a \cdot c)).$
- 2. Provide a *recursive* definition of multiplication for natural numbers.
- 3. Show that $(\forall a \in \mathbb{N})(\forall b \in \mathbb{N})(\forall c \in \mathbb{N})(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$.

- 5 You may rely on any proven theorems.
 - 1. Provide a *recursive* definition of the Fibonacci sequence $\mathcal{F} : \mathbb{N} \to \mathbb{N}$.

2. Show
$$\sum_{i=0}^{n} \mathcal{F}(2i+1) = \mathcal{F}(2n+2)$$
 for all $n \in \mathbb{N}$.